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Executive Summary 
 

There are two primary objectives of this task order. First, we were asked to review the 
County Base Values (CBV) for the Pasture, Rangeland, Forage Rainfall Index (PRF-RI) 
crop insurance program.   Secondly, we were asked to conduct a comprehensive review 
of the methodology and calculations used in the determination of the rainfall index and 
associated premium rates.  In both cases, we were asked to provide assessments of the 
current program, recommendations for changes, or any other improvements that we 
recommend RMA consider.   
 
A review of loss experience for the PRF rainfall index plan of insurance shows that the 
overall actuarial performance of the PRF plan of insurance has been strong.  The loss 
ratio only exceeded 1.0 in three of the 13 years of experience.  The summaries also 
make clear another point.  The rate of indemnification (claims frequency) is very high 
for the PRF plan.  The results indicate that 70-90 percent of policies had a claim. The 
high frequency coupled with overall very good actuarial performance probably 
indicates that the program suffers from a great deal of frictional cost: a high frequency 
of small losses that in most cases provide only a partial return of premium. It seems 
reasonable for RMA to explore program modifications that reduce frequency, possibly 
with offsetting increases in benefits for remaining claims, to better meet the needs of 
growers. 
 
Overall, we find the CBV calculation methods used for each intended use covered in 
the PRF insurance contract (e.g., non-irrigated hay, irrigated hay, and grazing) to be 
appropriate. We believe that the conceptual basis for the CBV values are sound. It 
seems reasonable for RMA to at least explore whether it is feasible to apply a minimum 
CBV value that is equal to a county-level or state-level measure of pastureland cash 
rent.  
 
In the current CBV methodology, NRCS Hybrid Productivity Model (HPM) derived 
productivity factors are utilized in the non-irrigated haying and the grazing CBV 
calculations. In particular, a “district-state” productivity factor is used for calculating 
the non-irrigated haying CBV, and a “county-state” productivity factor is used for 
computing the grazing CBV. These factors were derived based on the NRCS HPM 
model so that estimates of the district-level non-irrigated haying CBV and the county-
level grazing CBV are consistent with the inherent “productivity” of the pasture at these 
levels of geographic aggregation. The use of these productivity factors somewhat 
assures that the estimated CBVs at these levels are consistent with the inherent capacity 
of the land to produce pasture in these areas.  Aside from the NRCS HPM, the U.S. 
Forest Service’s “Rangeland Vegetation Simulator” (RVS) is an alternative.  It seems 
that output from this model can serve as an alternative data source to validate the 
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productivity values generated from the NRCS HPM.  
 
We provide a review of scientific literature related to the pasture and rangeland 
insurance product.  In general, this is a growing body of literature, with significant 
contributions in recent years.  We include a discussion of recent advances in index 
insurance.  Further, several recent papers specifically focus on the PRF program. 
 
The current procedure used in rating the PRF product utilizes a nonparametric empirical 
burn rate and parametric distributions derived from the log-normal and the truncated 
normal.  Because there are currently only 70 years of rainfall data available (in the CPC 
data currently used by RMA), the use of an empirical burn rate might be questionable.  
We believe that there is an error in the formula used to derive the BS/lognormal rates in 
the RMA rating program.  We examined the formula and believe there is a simple 
correction.  However, it will generally lower rates.   
 
Our review of the PRF product leads us to make the following recommendations. 
 

1. Validating the HPM productivity factors against alternative models 

The U.S. Forest Service’s “Rangeland Vegetation Simulator” can serve as an alternative data 
source to at least validate the productivity values generated from the NRCS HPM. 
Comparisons of the resulting CBV values from the RVS vis-à-vis the NRCS HPM can be 
conducted to see if there are any large discrepancies in the estimates. In the end, exploring an 
alternative source for productivity values can help improve the robustness of the CBV 
estimates.  

 
2. Modification of the County Based Value (CBV) 

Currently, there is no set minimum value for the district-level grazing CBVs used in the PRF 
contract. Therefore, it is possible for the district-level grazing CBV (used for a particular 
county) to be lower than the estimated NASS county-level pasture rental rate. Newton 
(2018), for example, has shown that there are cases in South Dakota where 2019 CBVs were 
up to 46 percent lower than NASS state-level pastureland rent in 2018.  Based on research 
cited in our exploration of the CBV, we recommend RMA apply a minimum CBV value that is 
equal to a county-level or state-level measure of pastureland cash rent (perhaps in a 
previous year or based on historical average). Applying this minimum (in conjunction with 
the other changes recommended in this report) may improve the risk mitigation benefits from 
the PRF product.  

We also recommend partitioning the CBV for the grazing type into improved pasture and 
rangeland, with the distinction being that improved pastures are managed and that 
“Management usually consists of cultural treatments: fertilization, weed control, reseeding”.  
The productivity differential estimates from the papers cited in this report indicate that a 
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rangeland-pastureland factor in the range of 60%-70% is justifiable as a “conservative” 
measure (especially in the Western States where there is a good mixture of unmanaged 
rangelands and managed pastureland). Hence, the State-level grazing CBV yield estimate can 
be adjusted downward by 30%-40% for insureds that self-select and say that their PRF-
insured land is unmanaged rangeland. On the other hand, the State-level grazing CBV yield 
estimate can be adjusted upward by 30%-40% for insured that self-selects and say that their 
PRF-insured land is managed pastureland. 

Notwithstanding this recommendation for adjusting the State-level grazing yield in the 
grazing CBV calculations, the recommendation in this report of using a minimum grazing 
CBV value based on pastureland rents should still serve as the “floor” on the calculated 
CBV. That is, if the resulting district-level CBV with the downward adjustment (due to using 
unmanaged rangeland) is lower than the minimum CBV based on pastureland rental rates, 
then the minimum CBV based on pastureland rental rates will be the applicable one. 

3. Adjusting the CBV Productivity Range 
 
With improvements in the CBV calculations over the last five years (that improves accuracy 
and precision) and implementation of the minimum grazing CBV above (Recommendation 
2), we believe that it is appropriate to reduce the range of available productivity factors in the 
PRF insurance offering. Similar area-based insurance plans offered by RMA that triggers on 
a county-yield “index”, such as the Area Risk Protection Insurance (ARPI), only have a 
productivity range between 0.8 and 1.2 (as compared to the 0.6 to 1.5 range in PRF). Hence, 
for consistency across index-based RMA product offerings and to align better with risk 
minimization behavior, we suggest narrowing the productivity factor to the 0.8 to 1.2 range.   

 
4. Continue Using the NOAA CPC Data 

 
RMA should continue to use the NOAA CPC precipitation data.  Alternative data sets 
(PRISM, NCEI, NEXRAD, NCDC) offer no real advantages and, in the case of the NCEI, a 
disadvantage in that the data are not “gridded” but rather are reported at the station level. 
The absence of any “ground-truthing” obviates any tangible approach to selecting one data 
set over another on the grounds of accuracy. Ultimately, we recommend no changes to the 
current data used to rate and design coverage. Although trends and structural breaks are 
sometimes identified in the precipitation data, such changes over time are always small and 
are not consistent across different grid IDs.  Climatologists have provided substantial 
evidence of trends in temperature and intensity of storms. Our analysis suggests the amount 
of rainfall over a two-month period has not changed significantly. We recommend that 
RMA continue to use the full 1948-present CPC data in its entirety and without explicit 
adjustments meant to reflect climate change. 
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5. Actuarial Sufficiency 
 

Overall, this program is actuarially sound.  Outside of a computation error in fitting the 
Black Scholes parameters, we find no significant shortcomings in the general approach used 
by RMA to estimate premium rates.  Methods currently used to bound rates and to select the 
final rates from among the different rate estimates are ad hoc.  We recommend that RMA 
consider the use of goodness-of-fit tests in the selection of the final parametric distribution 
used to estimate rates.  Of course, rates derived from parametric distributions should be 
compared to empirical burn rates.  The truncated normal distribution is strongly supported in 
a majority of cases.  Procedures currently used to spatially smooth rates are appropriate and 
we recommend no changes to these procedures. 
  
In some cases with extremely high or low variance, convergence issues may make it 
difficult to adequately estimate parametric rates and thus any measure based on such rates 
needs a careful review. We find a connection between rating and our next recommendation. 
Some grids/interval combinations result in extremely high rates (greater than 50%).  This 
typically occurs in extremely dry grid/intervals (See page 78).  RMA has sometimes 
excluded a county if any interval rate is above 50% in that county.  We recommend this rule 
be made permanent for all regions.  It will improve rating accuracy and augment 
recommendation 6.    

 
6. Focusing PRF on Viable Forage Production Areas 

 
As mentioned in recommendation 5, we believe eliminating counties where rates exceed 50 
percent will focus the program on viable regions.  If RMA prefers to eliminate whole 
counties from the program based on the suitability of soil and climate conditions for forage 
production, we recommend consideration of the land capability classification.  Specifically, 
we recommend dropping counties having more than 50% of the total area that falls into land 
capability class 8 and/or subclass C.  Such land has been designated by NRCS to be 
unsuitable for cultivation.  A review of the 2017 census indicates that only a very small 
proportion of land in such counties is used to harvest forage or hay.  This recommendation 
comes with two caveats.  First, eliminating entire counties may not be appropriate in areas 
where land quality is very heterogeneous.  This reflects the lack of resolution in a county 
aggregate.  Second, as is likely to be the case with any threshold criteria, the choice of 50% is 
admittedly arbitrary but is justified in light of the very limited acreage devoted to hay in 
forage in such areas.   
 
If RMA is willing to consider a higher degree of resolution and instead eliminate individual 
grid points rather than entire counties, we believe that the USFS measures of forage 
production provide an ideal metric for selecting areas to drop from coverage.  We have 
obtained a direct measure of average forage production for each grid point and have 
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demonstrated the strong correspondence between precipitation and forage production.  
Again, one can infer that, depending on the threshold selected, this would affect few 
producers of forage and rangeland.  This is again demonstrated by the fact that forage 
production is low, in terms of both output and acreage, in such areas. Once again, the 
threshold of rangeland production that defines dropping a grid point from the PRF plan is 
arbitrary but is directly justified by the very low level of forage production and 
concomitantly low allocation of acreage to forage in such areas.  
 
In summary, we recommend that RMA drop any grid point and its relevant 0.25-degree 
surrounding area that corresponds to the lowest 1-percentile of the distribution of forage 
production from eligibility for PRF coverage.  This would eliminate 96 of the 13,626 grid 
points currently in the program.  We have outlined alternative thresholds that could be used 
to eliminate marginal forage producing areas and believe that these may form the basis for 
future program revisions.  A less drastic step would be to allow insurance in these areas, but 
with a reduced CBV and to allow irrigated acres to insure.  We note that we also considered 
eliminating intervals with extremely high rates.  This is an actuarial approach, but we believe 
that it is also a practical approach to the problem.  
 

 
7. Better Targeting of Indemnities 

 
Our review leads us to conclude that the current program frequently pays for shallow losses 
that are likely not significant financial threats while at times not sufficiently compensating 
for deep losses that are often a part of widespread droughts driving up replacement forage 
costs.  We believe the program can become a better risk management tool, based on the 
evidence we find of a relationship between the replacement cost of forage and deep losses. 
We recommend dropping the maximum coverage level to 80 percent while also adding a 
disappearing deductible and adjustment to enhance indemnities when in an extreme loss 
situation.  One could develop more elaborate drought triggers, but they add significant 
complexity.  For the sake of operational simplicity, we believe the indemnity function should 
be in the form of a disappearing deductible and perhaps reflect an accelerated disappearing 
deductible. 

 
8. Focusing coverage on risk-reducing intervals. 

 

Our team reviewed a variety of resources and scientific studies focusing on forage and range 
production practices. We also conducted statistical analysis of the relationship of measured 
forage production to monthly rainfall amounts.  We find that there is wide variation in the 
relevant rainfall months due to forage species, production system, location, and rainfall 
patterns. However, we do find that with rare exceptions, there are no more than eight months 
in a year that have a significant rainfall effect. In some cases, the key months may be 
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preseason or postseason replenishment for the following year.  However, in a county-by-
county analysis, we found 1,638 counties (96.35%) have 5 or fewer months of significant 
precipitation effect.  For the Western states, 83.93% have only 3 or fewer months of 
significant precipitation effect. 

We believe this provides strong evidence of two things.  First, there is evidence in the forage 
literature and our analysis that producers risk management would be best served by focusing 
the value of the policy on the months that pose the greatest production risk. Spreading value 
within a year across extraneous intervals increases basis risk in the PRF product.  However, 
because production systems sometimes vary even within a county, we believe producers may 
need the flexibility to choose the periods that best fit their operation and reduce the basis risk 
for their farm.     

In the Pasture, Rangeland, Forage (PRF) Crop Provisions, section 2. (a) 
states: 
 
2.   Application 
(a) In addition to the provisions contained in section 2(c)(1) of the Basic Provisions, a 
percent of value must be allocated to more than one index interval for each grid ID, intended 
use, irrigated practice, and share. The minimum percent of value allowed in any one index 
interval by grid ID, intended use, irrigated practice, and share is 10 percent.  The 
maximum percent of the value that can be allocated to any single index interval by grid ID, 
intended use, irrigated practice, and share is specified in the Special Provisions. 
 
We note that this minimum is well below the value that would allow insuring six periods in a 
year (16.6%).  Ultimately, we recommend increasing the minimum percentage of value in 
any one index interval to 25 percent.  This will allow insuring eight months of a 12 month 
period.  (If intervals are widened to three-month intervals we suggest a 33 percent minimum 
value so that no more than nine months can be covered.)  This will require producers to 
focus participation in periods that most affect production.  We also believe a strong 
education program is needed for producers and agents to help the producer to achieve value 
allocations most correlated with their risk.  

 
9. An Alternative Approach to Reducing Frequent Shallow Losses. 

Recommendation 9 is offered for consideration only if the coverage level aspect of 
recommendation 7 is not adopted.  We demonstrate in this report that modifying the 
program such that three-month periods are used rather than two-month periods reduces 
payment frequency roughly the same as reducing coverage by 5 percent. We see no 
significant effect on risk reduction, and potentially this change makes the program simpler if 
there are fewer periods.  However, if a producer has a tight window of relevant rainfall risk 
than a three-month period this will in a sense require covering unneeded periods.     
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Chapter 1 Introduction 

 

Objective: 
 

There are two primary objectives of this task order. First, we were asked to review the 
County Base Values (CBV) for the Pasture, Rangeland, Forage Rainfall Index (PRF-RI) 
crop insurance program.  The CBV essentially provides the liability associated with this 
index-based product.  Secondly, we were asked to conduct a comprehensive review of 
the methodology and calculations used in the determination of the rainfall index and 
associated premium rates.  In both cases, we were asked to provide assessments of the 
current program, recommendations for changes, or any other improvements that we 
recommend RMA consider. 
 

Scope: 
 

 
For each task listed below, this order will involve submitting two reports after the 
contractor conducts the necessary research to accomplish the specific tasks and work 
requirements listed. The tasks have been conducted simultaneously. The work will involve 
data collection, review and analysis (including a review of any relevant academic research 
publications or articles), and report writing. 

 

Background of the Program 
 

The PRF-RI crop insurance program is an area plan of insurance based on an index of 
historical rainfall for specific two-month periods called index intervals.  The index is 
normalized such that 100 is approximately equal to the historical average of rainfall from 
1948 to the past year.  
 
PRF-RI utilizes a grid system rather than a county value like other area plans of insurance. 
The PRF-RI grid system is based on data produced by the National Oceanic and 
Atmospheric Administration Climate Prediction Center (NOAA CPC).  Indemnities are 
payable when the final grid index falls below the trigger grid index for the two-month 
index interval.  The trigger grid index equals the expected grid index (100) times the 
coverage level chosen by the producer.   
 
A producer has three primary choices for participation.  First, they may select one 
coverage level from 70 percent through 90 percent for the county, crop, intended use, 
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irrigated practice, and organic practice.  Second, they may select only one productivity 
factor from 60 percent through 150 percent for the county, crop, intended use, irrigated 
practice, and organic practice.  Third, a producer must select at least two index intervals 
but may select up to six index intervals. Once the intervals are chosen then they are 
required to allocate at least ten percent of value to each interval. 
 
One of the complexities of this product relates to the fact that the growing season is not 
necessarily when precipitation is important for forage growth.  In particular, preseason 
weather can affect forage growth.  Another challenge is driven by the differences in the 
growing season for different species.  Further, production systems may use these different 
growing seasons to even out the supply of forage. 
 
Figure 1-1. shows the aggregate number of policies earning premium and the policies 
indemnified for 2010-2019.   First, there has been a threefold increase in policies.  
Secondly, the number of polices indemnified is often nearly as high as the number of 
policies earning premium.  The percentage is at least 70 percent and in some years as 
much as 91 percent of polices earning a premium received an indemnity for a least one 
index period.   

 

 
Figure 1-1 

 
Figure 1-2 shows the growth in acreage in the Rainfall Index product.  Acreage has grown at a 
faster rate than policies earning premium in the last decade.  The acres insured in the program 
has increased five-fold and exceeded 140 million insured acres in 2019.  As a point of reference, 
the 2019 acreage for rainfall insurance is approximately double that of soybeans. 
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The actuarial performance of the program is shown in figure 1-3.  While 2019 data may be 
preliminary, there is a clear indication that only one year (2011) has a loss ratio that 
substantially exceeds 1.0.  Overall, the aggregate loss ratio for the decade is 0.85.  
Combined with Table 1-1, we conclude that it is an actuarially sound program with frequent 
indemnities.  The frequency stems because a producer essentially has up to six index periods 
that potentially may trigger an indemnity in a year.  However, it appears the program is 
rated correctly and collects sufficient premium.  The fact that the plan pays indemnities on 
70-90 percent of policies, coupled with a significant premium subsidy, means that PRF 
coverage is likely to frequently pay indemnities above the subsidized premium.   
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Figure 1-3

Table 1-1 summarizes the percent of total acreage insured at various coverage levels during 
2010-2019.  The most popular coverage level is the 90 percent coverage and the second 
most popular is 85 percent coverage.  Combined, the top two coverage levels account for 
more than 70 percent of insured PRF acres. The only other coverage level of significance is 
the 75 percent coverage.  Policies at the 65 percent coverage level are a very small portion 
of insured acres. 

Table 1-1 

COVERAGE PERCENT OF 
INSURED ACRES 

65% 0.004% 
70% 2.35% 
75% 24.36% 
80% 2.05% 
85% 33.44% 
90% 37.80% 

Discussion of Prior Experience 

Table 1-2 presents a summary of business over the history of the PRF rainfall index plan of 
insurance.  Table 1-3 presents a summary of business across states. These summaries 
highlight two important points.  First, the overall actuarial performance of the PRF plan of 
insurance has been strong.  The loss ratio only exceeded 1.0 in three of the 13 years of 
experience and the aggregate loss ratio across all years is 0.85.  The program is actuarially 
sound
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Table 1-2. Summary of Business for PRF by Year 

  County           Loss Loss 
Pol 

Indem Unit Indem 
Year Observations Liability Premium Subsidy Indem Acres Cost Ratio Rate Rate 
2007 657              325,817,906             63,523,875             37,473,952             40,471,879             24,504,699  0.1242 0.6371 0.8156 0.3429 
2008 822              309,449,519             60,075,919             35,528,830             79,189,613             23,065,184  0.2559 1.3182 0.9520 0.5883 
2009 1106              445,582,606             85,549,325             46,394,694             43,972,078             33,576,725  0.0987 0.5140 0.7447 0.3164 
2010 1237              370,635,267             77,295,912             42,174,296             55,124,485             27,750,078  0.1487 0.7132 0.7670 0.3065 
2011 1902              480,996,764           105,176,184             57,394,647           178,394,556             30,977,432  0.3709 1.6962 0.8124 0.6156 
2012 2374              743,734,976           156,593,505             84,907,799           162,225,446             44,028,691  0.2181 1.0360 0.9500 0.5673 
2013 3176              936,048,488           187,954,873           100,932,509           157,761,695             49,637,100  0.1685 0.8394 0.8442 0.4536 
2014 3149              911,932,503           189,225,864           101,434,295           164,826,648             46,961,303  0.1807 0.8711 0.8304 0.4939 
2015 3152              973,376,596           200,322,890           107,304,397           101,483,846             47,952,812  0.1043 0.5066 0.8000 0.3149 
2016 3807          1,390,820,805           280,794,245           151,276,230           178,756,107             51,792,278  0.1285 0.6366 0.8529 0.3821 
2017 4148          1,744,753,278           380,380,725           202,997,207           341,240,501             74,936,300  0.1956 0.8971 0.9161 0.4565 
2018 4592          2,378,024,087           520,182,283           278,223,896           500,039,152             98,288,987  0.2103 0.9613 0.7900 0.4061 
2019 4806          2,625,920,558           581,849,617           310,489,756           291,559,417           140,392,732  0.1110 0.5011 0.6924 0.3044 
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Table 1-3. Summary of Business for PRF by State 

  County           Loss Loss Pol Indem 
Unit 

Indem 
Year Years Liability Premium Subsidy Indem Acres Cost Ratio Rate Rate 

Alabama 1279 
             
194,173,260  

               
25,223,506  

           
13,046,941             16,009,002  

              
1,323,210  0.082 0.635 0.741 0.380 

Arizona 232 
         
1,211,174,726  

             
354,954,154  

         
187,329,797           248,453,812  

           
97,979,353  0.205 0.700 0.660 0.363 

Arkansas 711 
             
141,448,552  

               
21,101,887  

           
11,159,446             11,149,390  

              
1,000,937  0.079 0.528 0.661 0.271 

California 931 
             
529,092,833  

             
153,387,468  

           
83,430,636           112,252,895  

           
27,273,848  0.212 0.732 0.724 0.471 

Colorado 1335 
             
811,446,609  

             
170,165,702  

           
89,019,127           133,023,522  

           
35,550,623  0.164 0.782 0.738 0.404 

Connecticut 14 
                     
514,006  

                       
48,615  

                    
26,491                      12,761  

                      
1,439  0.025 0.262 0.400 0.180 

Delaware 4 
                       
71,869  

                          
8,358  

                      
4,265                        2,592  

                          
151  0.036 0.310 0.400 0.188 

Florida 696 
             
937,704,554  

             
195,525,483  

           
99,708,323           159,605,498  

              
9,695,132  0.170 0.816 0.757 0.478 

Georgia 1223 
             
160,810,467  

               
23,452,034  

           
12,003,910             14,462,874  

              
1,090,480  0.090 0.617 0.639 0.360 

Idaho 326 
             
158,459,187  

               
33,681,048  

           
18,060,585             15,250,904  

              
6,727,359  0.096 0.453 0.384 0.227 

Illinois 441 
               
44,610,166  

                 
6,041,285  

              
3,203,698                2,402,370  

                 
181,181  0.054 0.398 0.421 0.184 

Indiana 324 
               
21,504,537  

                 
2,556,956  

              
1,336,965                   708,612  

                    
91,297  0.033 0.277 0.501 0.196 

Iowa 363 
               
24,942,607  

                 
3,599,941  

              
1,888,135                1,081,196  

                 
214,660  0.043 0.300 0.489 0.232 

Kansas 2596 
             
415,382,517  

               
78,585,453  

           
41,622,187             35,990,280  

              
9,546,460  0.087 0.458 0.610 0.278 

Kentucky 575 
             
114,142,198  

               
14,132,077  

              
7,242,781                5,357,827  

                 
578,629  0.047 0.379 0.516 0.201 

Louisiana 231 
               
37,443,848  

                 
6,070,193  

              
3,118,848                3,189,690  

                 
309,767  0.085 0.525 0.671 0.269 

Maine 1 
                       
43,188  

                          
3,868  

                      
1,973                               -    

                          
294  

 
0.000 0.000 0.000 0.000 

Maryland 131                                                                         308,437                      0.050 0.456 0.496 0.296 
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  County           Loss Loss Pol Indem 
Unit 

Indem 
Year Years Liability Premium Subsidy Indem Acres Cost Ratio Rate Rate 

6,130,947  676,424  357,636  18,896  
Massachuset
ts 36 

                 
2,708,929  

                     
290,129  

                 
159,022                   115,065  

                      
6,955  0.042 0.397 0.524 0.236 

Michigan 168 
               
20,611,542  

                 
2,254,679  

              
1,165,370                   645,042  

                    
51,520  0.031 0.286 0.433 0.206 

Minnesota 775 
               
47,981,899  

                 
7,047,258  

              
3,705,959                3,432,017  

                 
402,331  0.072 0.487 0.597 0.304 

Mississippi 264 
               
50,047,159  

                 
6,996,169  

              
3,612,541                2,361,800  

                 
344,286  0.047 0.338 0.466 0.212 

Missouri 2002 
             
316,835,176  

               
51,755,764  

           
26,570,583             22,127,310  

              
2,856,061  0.070 0.428 0.588 0.281 

Montana 1576 
             
366,870,705  

               
61,557,338  

           
32,232,611             31,257,386  

           
40,251,597  0.085 0.508 0.577 0.304 

Nebraska 2143 
             
456,245,644  

               
72,030,851  

           
37,903,555             30,116,299  

           
16,954,149  0.066 0.418 0.600 0.269 

Nevada 129 
             
573,335,271  

             
156,591,574  

           
76,932,282             72,882,827  

           
55,397,634  0.127 0.465 0.662 0.387 

New 
Hampshire 4 

                     
403,218  

                       
42,711  

                    
21,783                        9,259  

                          
954  0.023 0.217 0.800 0.300 

New Jersey 12 
                     
714,317  

                       
89,710  

                    
45,754                      53,827  

                      
1,587  0.075 0.600 0.533 0.118 

New Mexico 468 
             
575,246,566  

             
149,583,593  

           
81,147,732             76,437,986  

           
49,347,821  0.133 0.511 0.684 0.341 

New York 357 
               
98,812,977  

                 
9,822,639  

              
5,032,006                7,674,716  

                 
286,266  0.078 0.781 0.619 0.342 

North 
Carolina 785 

               
55,517,863  

                 
6,605,368  

              
3,375,328                3,245,691  

                 
418,602  0.058 0.491 0.632 0.340 

North 
Dakota 1886 

             
595,669,875  

             
103,655,250  

           
54,329,685             58,293,602  

           
26,658,263  0.098 0.562 0.703 0.347 

Ohio 272 
               
25,777,443  

                 
2,946,199  

              
1,499,649                1,796,923  

                    
73,610  0.070 0.610 0.581 0.241 

Oklahoma 1722 
             
485,862,434  

               
95,106,374  

           
50,066,159             49,853,489  

           
15,617,471  0.103 0.524 0.770 0.370 

Oregon 220 
             
301,820,585  

               
68,699,090  

           
36,749,133             40,730,571  

           
15,254,536  0.135 0.593 0.559 0.328 

Pennsylvani
a 913 

             
191,758,209  

               
19,967,863  

           
10,226,951             13,608,813  

                 
511,731  0.071 0.682 0.719 0.362 
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  County           Loss Loss Pol Indem 
Unit 

Indem 
Year Years Liability Premium Subsidy Indem Acres Cost Ratio Rate Rate 

Rhode 
Island 10 

                     
215,001  

                       
21,311  

                    
11,876                        7,703  

                          
579  0.036 0.361 0.600 0.172 

South 
Carolina 333 

               
33,921,655  

                 
4,246,845  

              
2,220,294                2,231,155  

                 
179,953  0.066 0.525 0.656 0.375 

South 
Dakota 1573 

             
687,908,605  

             
127,360,448  

           
65,947,643             59,381,576  

           
20,381,212  0.086 0.466 0.552 0.270 

Tennessee 490 
             
132,060,671  

               
17,174,022  

              
8,751,398                6,243,484  

                 
718,369  0.047 0.364 0.555 0.225 

Texas 10035 
         
5,697,665,157  

         
1,291,001,051  

         
712,751,698           982,790,020  

         
344,971,712  0.172 0.761 0.865 0.419 

Utah 194 
             
216,710,968  

               
50,278,324  

           
26,116,051             24,455,361  

           
29,123,019  0.113 0.486 0.489 0.253 

Vermont 7 
                 
1,339,082  

                     
123,287  

                    
62,881                      72,592  

                      
4,052  0.054 0.589 1.000 0.407 

Virginia 893 
               
67,689,986  

                 
7,678,783  

              
3,975,355                3,893,933  

                 
665,363  0.058 0.507 0.650 0.370 

Washington 121 
               
83,224,605  

               
20,720,353  

           
10,621,276             15,954,430  

              
2,472,433  0.192 0.770 0.519 0.286 

West 
Virginia 30 

                 
1,012,383  

                     
111,045  

                    
56,164                      35,023  

                      
7,682  0.035 0.315 0.514 0.221 

Wisconsin 747 
             
117,745,821  

               
14,473,120  

              
7,782,840                4,381,314  

                 
433,469  0.037 0.303 0.441 0.299 

Wyoming 264 
             
219,953,040  

               
40,166,981  

           
20,108,822             21,694,547  

           
18,349,816  0.099 0.540 0.555 0.262 
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The summaries also make clear another point.  The rate of indemnification (claims 
frequency) is very high for the PRF plan.  The results indicate that 70-90 percent of policies 
had a claim.  Likewise, about 30-60 percent of individual units had a claim.  The acreage 
insured under the PRF plan is illustrated in Figure 1-4 below.  The figure demonstrates the 
fact that much of the participation is concentrated in the western half of the US.  This 
partially reflects the trend toward much larger counties in this section of the country.  
However, even in light of this fact, participation reflects spatial heterogeneity.  Figures 1-5 
and 1-6 illustrate the average loss ratio and loss cost ratio.  Loss ratios are the highest in 
Texas and southern Florida.   
 
The relatively high cost of the program, as reflected in the loss cost ratio, is much higher in 
the far west and southwest.  Texas appears to have high participation, high loss ratios, and 
high loss cost ratios.  In Figures 1-7 and 1-8, we illustrate spatial patterns of claims 
frequency, as measured by the proportions of policies and units triggering indemnities.  For 
the sake of comparison, we also illustrate claims frequency using the same metrics for all 
insured crops and all insurance plans.  As we have noted, the frequency of claims for PRF 
appears to be far above the claims frequency for all plans and crops.  Though geographic 
patterns of claims are similar for PRF and other plans, the rate of claims is much greater in 
the case of PRF. 
 
This suggests that a tangible revision to improve the PRF plan of insurance is to undertake 
actions to reduce the frequency of claims while still providing growers meaningful coverage.  
Several different approaches to changes, including disappearing deductibles and double 
triggers, should be contemplated.  A simple approach to modifying coverage to reduce claims 
while still providing protection when conditions are poor is to modify the terms of coverage 
by adopting differing thresholds for triggering a claim and modifying the indemnity payout 
in the event of a claim.  A transparent approach to deriving the appropriate rating structure 
for such a change already exists in RMA’s current rating procedures.  If we decompose the 
determinants of the raw rate into its two components---the probability of a claim (risk) and 
the expected indemnity payment in the event of a claim, rates can be determined for any 
threshold of coverage.   
 
Consider a hypothetical example of a unit with 70 percent and 90 percent premium rates of 
0.10 and 0.27, respectively.  Any rate can be decomposed as the product of the probability of 
a claim and the conditional expected claim (i.e. Rate= Prob(Claim) x E(Claim|Claim>0).  
These two components can be considered separately to determine a rate for a policy that pays 
90 percent indemnities, but only if losses exceed 70 percent.  Continuing the hypothetical 
case, consider such a policy.  If the probabilities of loss for the 70 percent and 90 percent 
plans are 0.25 and 0.45, a rate for coverage that pays 90 percent but only if losses exceed 70 
percent, would have a rate of only 0.15.  Claims frequency would be reduced to a long-run 
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average of 25 percent and producers would retain protection against catastrophic losses.  We 
recommend that RMA consider such coverage, either as an option or as a replacement for the 
current plan.   
 
 

 

Figure 1-4 
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Figure 1-5 
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Figure 1-6 
 

 

Figure 1-7 

 

 

Figure 1-8 
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Figure 1-9 

 

Figure 1-10 
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It is also relevant to note that many areas where the PRF coverage is offered are so dry as to 
likely preclude the long-run establishment of viable pasture and rangeland.  Figures 1-11 and 
1-12 below illustrate the long-run averages of temperature and rainfall in the US, calculated 
over the 1990-2019 period.  Figure 1-13 presents 2018 premium rates for policies sold at the 
90 percent coverage level.  Clear patterns of heat and moisture deficiency stresses are 
apparent in the diagrams.  Likewise, the areas that have the highest risk, highest premium 
rates, and highest claims frequency are largely the same.  A relevant question for RMA 
pertains to whether coverage should even be offered in these very high-risk (excessively hot 
and dry) areas, which are unlikely to be viable for long-run pasture and rangeland.  We 
recommend that RMA consider eliminating coverage in areas where the climate is not 
conducive to viable pasture and rangeland.  Such areas may be identified through a 
consideration of the relevant research on the relationship between grassland and precipitation 
and the long-run trends illustrated in the figures.   
 

 

 

Figure 1-11 

Long-Run (1990-2019 Average) Temperature 
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Figure 1-12 

Long-Run (1990-2019 Average) Precipitation 
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Figure 1-13 

 

Pasture and Rangeland Production Systems 
 

Production systems for pasture and rangeland differ widely and the PRF is asked to 
serve the needs of these varied production systems.  Perhaps the broadest distinction 
falls along the line of pasture versus rangeland.  Sanders, Jolley, and Dobrowolski 
(Figure 1-14) roughly divided the country north to south along the 99th and then the 97th 
parallel. Roughly, to the east of this line, there are improved pastures in an area of 
greater rainfall.  To the west, there are generally more native forages produced with 
lower rainfall.  
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Figure 1-14 

 
 
The USDA NRI Report (2018) provides a useful definition of terms relevant to pasture 
rangeland and cropland.  That provides a distinction of the production systems where the PRF 
product is used.   
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The 2015 NRI also provides data about the relative percentages of U.S. land covers. Figure 1-
15 shows the Federal Lands, Rangeland, and Forest land all three account for 21 percent of U.S. 
land cover (We note some federal lands are used for grazing.).  Cropland is slightly behind the 
top three categories at 19 percent of land cover.  Relevant to this study is pastureland 
representing 6 percent on land cover.  Summed pastureland and rangeland represent more than 
a quarter of all land cover in the U.S. grazed Federal lands  

 
  

NRI Definitions 
Rangeland 
A broad land cover/use category on which the climax or potential plant cover is 
composed principally of native grasses, grass-like plants, forbs or shrubs suitable for 
grazing and browsing, and introduced forage species that are managed like rangeland. 
This would include areas where introduced hardy and persistent grasses, such as crested 
wheatgrass, are planted and such practices as deferred grazing, burning, chaining, and 
rotational grazing are used, with little or no chemicals or fertilizer being applied. 
Grasslands, savannas, many wetlands, some deserts, and tundra are considered 
rangeland. Certain communities of low forbs and shrubs, such as mesquite, chaparral, 
mountain shrub, and pinyon-juniper, are also included as rangeland. 
 
Pastureland 
A land cover/use category of land managed primarily for the production of introduced 
forage plants for livestock grazing. Pastureland cover may consist of a single species in a 
pure stand, a grass mixture, or a grass-legume mixture. Management usually consists of 
cultural treatments: fertilization, weed control, reseeding, renovation, and control of 
grazing.  
 
Cropland 
A land cover/use category that includes areas used for the production of adapted crops 
for harvest. Two subcategories of cropland are recognized: cultivated and non-cultivated. 
Cultivated land comprises land in row crops or close-grown crops, as well as other 
cultivated cropland; for example, hayland or pastureland that is in a rotation with row or 
close-grown crops. Non-cultivated cropland includes permanent hayland and 
horticultural cropland 
 
Source: USDA Summary Report: 2015 National Resources Inventory (2018) 
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Figure 1-15 

 
 
A further examination of the forage production systems shows a wide variation in management 
intensity of forage species and factors such as haying versus grazing.  Sprinkle (2004) discuss 
the management side of understanding the carrying capacity of forage and also understanding 
the variation in forage demand resulting from differing age and species of the animals to be fed. 
Producers generally deal with the challenge of having sufficient forage for year-round use while 
there is often strong seasonality in forage production.  A few strategies used to maintain forage 
across seasons include harvesting hay, planting forage varieties with different growing seasons, 
and extending production by rotations and stockpiling forage.  Reeves et al. (2015) discuss new 
tools using weather forecast models to predict growing season forage production to better 
manage production. 
 
The seasonality of production is directly related to the risk protection needed from the PRF 
product.  Table 1-2 is from the USDA NRCS Range and Forage Handbook (2017).  It reflects 
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varieties and management systems typical of the eastern U.S.   In several cases production is 
concentrated in a few months that leads to specific rainfall needs to produce that crop.  With 
other species or blends, production is more spread out, but major production of these forages 
are primarily found in the April through November period.  Herbel (2015) focuses on west 
Texas, Oklahoma, and New Mexico and finds that 70 percent of rainfall in the region falls in 
the spring to summer months making them a critical period for risk protection.  Pieper survey 
the literature for the Central Plains and May-June rains or in another region early summer rains 
were highly predictive of forage production.   
 
Various systems have been attempted to achieve a more nearly year-round production system. 
In colder climates, this tends to involve stockpiling un harvested forage (May et al. 2003).  In 
Southern areas with warmer winter temperatures, annual grasses are sometimes overseeded to 
produce winter forage, but interestingly tend to face a problem of too much rather than too little 
rainfall.  In drier climates, a wider forage production system is often attempted with irrigation 
ensuring sufficient water.  However, various limitations such as the natural growth cycle of 
forages often come into play. 
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Table 1-2 
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Chapter 2 Task 1:  A comprehensive review of the County Base Values   
 

The County Base Value in the PRF insurance product essentially represents the value of 
insurance per acre insured. The CBV is a base measure from which insureds can adjust insurance 
coverage amount and allocate it across the chosen intervals. Multiplying the coverage level 
chosen and the productivity factor to the CBV gives the dollar protection (e.g., liability amount) 
for the insured’s PRF insurance contract.  In this section, we describe the CBV calculation 
methodology as it is currently implemented, analyze the insurable risks present with lack of 
precipitation (depending on intended use), evaluate the current CBV methodology, and provide 
recommendations to improve the CBV calculation approach.    
 

Current CBV Methodology (2020) 
 
Over the last four years (2016-2019), there have been several changes made to the methodology 
for calculating the CBVs to improve the accuracy of this measure. The history of these changes 
is discussed in the RMA document titled: “Pasture, Rangeland, and Forage County Base Values 
Method” (RMA, 2019). The PRF insurance product insures pasture, rangeland, and forage 
intended for haying and grazing. Moreover, the haying practice is separated into two distinct 
types: non-irrigated haying and irrigated haying. Therefore, there are three different CBV 
calculation methodologies for each insurable intended use: non-irrigated haying, irrigated 
haying, and grazing. The CBV methodology for each intended use is discussed in turn below. 
The summary of CBV calculation steps is provided in the Appendix. 
 

Non-irrigated Haying CBV 
 
The CBV for non-irrigated haying practice is based on the expected annual revenue from an acre 
of non-irrigated hay production. That is, CBV = non-irrigated hay yield × non-irrigated hay 
price. The concept is such that this represents the total value of insurable non-irrigated hay 
production that could be lost (due to, say, lack of rainfall). In the context of the PRF insurance 
product, it would have been ideal if CBV values are calculated for each insurable grid 
(encompassing all intervals) available for the product. However, the main problem is that limited 
data exists for the yield and price components of the simple CBV calculation above (e.g., for 
non-irrigated hay revenue) at the ideal level of aggregation desired.  Hence, the PRF insurance 
product has a CBV calculation procedure giving values at the “agricultural district” (sub-state) 
level based on available data and information at different levels of aggregation (e.g., state and 
county-level datasets are utilized to calculate the agricultural-district-level CBV for non-irrigated 
hay production). 
 
The non-irrigated hay yield component (in tons/acre) of the CBV is calculated by first taking the 
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10-year average of state-level NASS yield data (e.g., NASS “all hay” yields in tons/acre) for 
each state that PRF is available. Then, a non-irrigated haying ‘factor’ is calculated based on the 
ratio of non-irrigated yield relative to the “all hay” yields based on information from the NASS 
Farm and Ranch Irrigation Survey (FRIS). This ‘factor’ is then multiplied to the 10-year state 
average ‘all hay’ yields to get an estimate of the non-irrigated hay yield for each state (in 
tons/acre). The non-irrigated haying ‘factor’ serves to adjust the average state-level “all hay” 
yields so that it will coincide more with non-irrigated hay production (i.e., rather than a hay yield 
that represents a mixture of both irrigated and non-irrigated production).  To calculate an 
agricultural-district-level non-irrigated hay yield, the NRCS hybrid productivity model (HPM) is 
then utilized to estimate a percent difference between district-level and state-level net primary 
productivity (NPP) measures (e.g., we call this the NPP district-state factor). This NPP “district-
state” factor is multiplied to the state-level non-irrigated hay yield estimate to get the 
agricultural-district-level non-irrigated hay yield value (in tons/acre). 
 
On the other hand, the non-irrigated hay price component of the CBV calculation is based on 
three-year average state-level hay price data (in $/ton) from NASS (e.g., the NASS “all hay, 
excluding alfalfa” price data). This is the non-irrigated hay price procedure used for all PRF 
states, except for CO, ID, NV, NM, OR, and WA. For these exceptions, the reported NASS hay 
prices for these states mostly reflect the irrigated practice (and is valued higher). Thus, for these 
exception states, a regional average of the state-level non-irrigated hay price (in $/ton) in the 
Plains states is used instead.  
 
The average state-level non-irrigated hay price ($/ton) is then multiplied by the agricultural-
district-level non-irrigated hay yield value (ton/acre) to eventually get the district-level non-
irrigated haying CBV (in $/acre) used in the PRF insurance product. Several other capping 
procedures are then conducted, such as limiting year-to-year CBV changes to +/-35 percent and 
having a maximum CBV value of $500. 
 

Irrigated Haying CBV 
 
In contrast to the non-irrigated haying CBV that is mainly based on an estimate of expected 
revenue, the irrigated haying CBV calculation method is primarily based on the cost of 
additional irrigation. The concept is that lack of precipitation (or rainfall) in an irrigated 
perennial PRF production context will generally mean that the irrigator will need to pump more 
water to compensate for the shortfall in precipitation. Hence, the “loss” incurred due to the lack 
of rainfall is the additional cost of pumping water. 
 
Therefore, irrigated haying CBV is primarily based on information from the FRIS survey that 
reports irrigation costs per acre-inch by source (at the state-level). A weighted average of the 
irrigation costs from all sources is calculated at the state-level to estimate an overall average 
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state-level irrigation cost per acre-inch. Adjustments to these overall state-level irrigation costs 
are then implemented for Kansas and Texas based on well-depth data collected from an irrigation 
model (e.g., we interpret this to mean that costs go up as well-depth increases in these states). No 
further adjustments are made for other PRF states. The estimated state-level irrigation cost per 
acre-inch in each state is then multiplied with rainfall levels (in inches) to get the irrigated haying 
CBV ($/acre) estimate. The irrigated haying CBVs are then capped at 75 percent of the non-
irrigated CBV.    
 

Grazing CBV 
 
Much like the non-irrigated haying CBV, the grazing CBV is conceptually based on an expected 
hay revenue measure. The idea is that the impact of precipitation shortfalls for grazers is 
typically the cost of supplemental hay feeding due to the forage production lost in the field with 
the lack of rainfall. However, the procedure used to calculate the hay yield and the hay price 
components of the expected revenue measure for grazing CBV is different from the non-irrigated 
haying CBV. This is partly because hay yield for grazing can be more directly approximated 
using information about animal stocking rates and the forage consumed per animal unit. Also, 
hay yields intended for grazing tend to be lower (on average) relative to hay yields that are 
harvested for hay. The price of hay for grazing also is typically lower than the price of harvested 
non-irrigated hay since the harvested hay prices implicitly incorporate the higher cost of 
producing or maintaining pasture for haying. Pasture grass for grazing also tends to have lower-
quality relative to an equivalent harvested baled hay value, which may again result in the price 
differential.    
 
The grazing hay yield component of the grazing CBV is calculated based on NASS state-level 
pasture rental rate and grazing rate information. Yearly state-level pasture rental rates from 
NASS are measured on a dollar per acre basis, and the grazing rate (also called grazing fee) is 
measured in dollars per animal unit month (AUM). To get a ton/acre grazing hay yield value, 
first, a 10-year state-level average of pasture rates and grazing rates is calculated for each state 
where data is available. Second, the 10-year average pasture rate (in $/acre) is then divided by 
the 10-year average grazing fee (in $/AUM). This ratio provides an estimate of average forage 
consumption measured in AUMs per acre (e.g., this is an estimate of the amount of forage 
“harvested” by the livestock). Since an AUM is equivalent to about 0.47 tons of hay (based on 
NRCS data), the last step is to multiply 10-year state-level average forage consumption (in 
AUMs/acre) by the 0.47 tons/AUM to get an estimate of the 10-year state-level average grazing 
hay yield (in tons/acre). This is the estimate of the grazing hay yield component of the expected 
revenue. 
 
The price component of the grazing CBV is estimated by utilizing a “blended” measure derived 
from state-level grazing rate information and non-irrigated hay price information. The grazing 
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hay price estimates are based on three-year state averages of the grazing rates and non-irrigated 
hay prices. First, three-year averages of the state-level grazing rate data (in $/AUM) and the 
state-level non-irrigated hay price data (in $/ton) are calculated. Second, the three-year average 
state-level grazing rate is then divided by the 0.47 tons/AUM factor (as mentioned above). Recall 
that this latter factor represents the “ton” equivalent of the “AUM” measure of forage 
“harvested” by the livestock. The resulting value from this second step is an estimate of the 
grazing rate in the desired dollars per ton ($/ton). The last step is calculating the “blended” 
grazing price (in $/ton) by taking the average of the grazing rate ($/ton) calculated in the second 
step and the non-irrigated hay price ($/ton). The pricing procedure described above applies only 
to states with grazing rate information in ($/AUM). For states without grazing rate information, 
the state-level non-irrigated hay price is simply multiplied with a 0.762 factor, where this factor 
represents the ratio of grazing rates to non-irrigated hay price in the Plains states.  
 
An initial estimate of the grazing CBV at the state-level (in $/acre) is then calculated by 
multiplying the grazing hay yield estimate (in tons/acre) with the “blended” grazing price 
estimate (in $/ton). County-level grazing CBVs are then derived from the state-level grazing 
CBV using the pasture productivity estimates from the NRCS HPM (as described in the non-
irrigated hay CBV section above). County-level productivity measures are estimated for each 
county in a particular state, and then these county-level measures are divided by the state-level 
productivity measure to get the “county-state” productivity factor (e.g., the ratio of the county 
and state productivities). The “county-state” productivity factor is then multiplied by the state-
level grazing CBV estimate to compute a county-level CBV (in $/acre). The county-level CBVs 
for all counties that comprise each agricultural district in a state are then averaged to get the 
district-level grazing CBV (in $/acre) that is used for the PRF insurance product.  
 

Rangeland and Pastureland CBV differences 
 

To follow on the previous section, we want to delve further into the differences between 
pastureland and rangeland CBV.  In Chapter 1 of this report, NRI definitions of “rangeland” and 
“pastureland” were discussed to distinguish one from the other. For rangelands, one key 
identifying characteristic is that rangelands used for grazing typically have “little or no chemicals 
or fertilizer being applied.” In contrast, pastureland used for grazing involves management 
practices that “usually consists of cultural treatments: fertilization, weed control, reseeding, 
renovation…” With these distinguishing characteristics, it is natural to expect that the 
productivity of pastureland used for grazing would be higher than rangelands for grazing since 
productivity-enhancing management practices are implemented in pastureland while it is not 
applied in rangelands. Consequently, CBV values may also then be higher for pastureland used 
for grazing vis-à-vis rangelands used for grazing (which would justify an adjustment factor in the 
grazing yield component of the grazing CBV calculation). 
 
Using high-resolution remote sensing and satellite data sets, the study of Robinson et al. (2019) 
supports the existence of a productivity differential between pasturelands (that are managed) and 
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rangelands (that are not managed). In Robinson et al. (2019), managed or improved pastureland 
are characterized as “private” lands where private owners actively manage their pasture through 
fertilization, reseeding, etc. On the other hand, what we call unmanaged rangeland in this report 
coincides with what Robinson et al. (2019) call “public” lands (with no or little management). In 
general, Robinson et al. (2019) find that the productivity of private grazing land is consistently 
higher than public lands. Considering the whole continental US (CONUS), productivity of public 
lands is about 48% of the productivity of private lands (See Figure 4 and supplemental Table S1 
in Robinson et al., 2019). For the Western States (Washington, Oregon, California, Idaho, 
Nevada, Arizona, New Mexico, Utah, Colorado, Wyoming, and Montana), productivity of public 
grazing lands is 59% of the productivity of private grazing lands.  These results strongly suggest 
that managed private lands (or pasturelands) for grazing are more productive than unmanaged 
public lands (or rangelands).1 
 
An online resource from Michigan State University (Lindquist, 2014) also provides evidence that 
grazing land with no nitrogen (N) fertilization tends to be less productive than any grazing land 
with N application (i.e., one-time spring N application or split N applications). Based on several 
field trial data sets in Michigan (as reported in Lindquist 2014), the calculated ratio between the 
average forage yields in “no-N fertilization” lands and the “N-managed” lands ranged from 45% 
to 91% (with an average ratio of about 65%). Overall, these trial data results (ranging from 1966-
2014) support the idea that unmanaged rangelands (without any N fertilization) are less 
productive than managed pasturelands (with N fertilization). 
 
Baldwin, Hakinson, and Anderson (1974) found that a single application of 27-12-O fertilizer on 
native rangeland in northwestern Oregon produced a 4-year total herbage production of 2.66 
times as much as on unfertilized plots produced.  Higher levels of fertilizer increased the ratio.  
Increasing the rate of fertilization improved the strength of perennial grasses, increased 
utilization of herbage by cattle, and extended the forage season.  Goetz (1969) found 67 pounds 
of nitrogen per acre increased rangeland forage production in North Dakota by 63 percent 
relative to no nitrogen application.  Mosely, Brewer, and Skeen (2020) recommend stocking 
rates on healthy rangeland to be around ½ that of well-managed seeded pastures in Montana.   
 
We also note that Hooper and Johnson (1999) conducted regression analysis examining the 
degree to which water and nitrogen limit dryland forage production systems.  One conclusion 
they reach is that the relative increase in forage production due to nitrogen application is robust 
across different rainfall scenarios. 
 

Observations, Analysis, and Recommendations 
 
Overall, we find the CBV calculation methods used for each intended use covered in the PRF 
insurance contract (e.g., non-irrigated hay, irrigated hay, and grazing) to be appropriate. We 
believe that the conceptual basis for the CBV values are sound. As a risk management tool, the 

 
1 Note that the Robinson et al (2019) also provided a supplemental data set that includes information about the 
proportion of private vs. public grazing land by State (as well as the corresponding average productivity for each 
type of grazing land by State). 
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PRF insurance aims to compensate hay producers and grazers for the value of production lost in 
their pasture (or rangeland) when there are shortfalls in precipitation (i.e., given that rainfall, or 
water in general, is a major determinant of eventual pasture/rangeland/forage production). 
Hence, the CBV should reflect the total value at risk (i.e., ‘the insurable risk’ or the total value of 
production that can be lost) when there is effectively no rainfall (or zero pasture production).  
 
For the case of non-irrigated hay production and/or pasture intended for grazing, having the 
CBVs for these intended uses conceptually linked to an expected revenue measure is reasonable. 
This is because expected revenue (hay yield multiplied by hay price) is generally the value of the 
hay lost (in $/acre) when there is a lack of sufficient rainfall. On the other hand, for irrigated hay, 
the ‘loss’ or additional cost incurred when there is a lack of rainfall is normally the additional 
cost of pumping more water to compensate for the shortfalls in precipitation. Hence, the irrigated 
hay CBV being conceptually linked to an estimate of pumping cost seems reasonable as well. 
These underlying conceptual linkages indicate that the CBV calculation methods are reasonably 
linked to the major insurable risks PRF purchasers face for each intended use when there is 
insufficient rainfall.  
 
Given the general conceptual soundness of the CBV calculation methods for each intended use, 
the main challenge for RMA is to precisely estimate the CBVs given the inherent limitations of 
the data available for calculating it (e.g., limitations of data on the non-irrigated hay and grazing 
hay yields and prices, and the irrigation pumping costs). Hence, the remainder of this section 
discusses observations and recommendations concerning further improving the accuracy of CBV 
calculation methods and making adjustments to other PRF contract elements given the 
improvements in the CBV. In general, we believe that the modifications to the CBV calculation 
methods implemented by RMA over the last four years have already improved CBV estimates, 
and the suggestions here are meant to refine the CBV process further.   
 

Setting a minimum grazing CBV: County-level NASS pasture rental rate data 
 
Currently, there is no set minimum value for the district-level grazing CBVs used in the PRF 
contract. Therefore, it is possible for the district-level grazing CBV (used for a particular county) 
to be lower than the estimated NASS county-level pasture rental rate. Newton (2018), for 
example, has shown that there are cases in South Dakota where 2019 CBVs were up to 46 
percent lower than NASS state-level pastureland rent in 2018. Though it should be noted that, in 
2020, RMA was able to raise CBVs in South Dakota in response to this issue. There were also 
about 225 counties with 2019 CBVs below the 2017 NASS county-level cash pastureland rent 
(though there were over 1000 counties with CBVs more than 200 percent higher). Hence, 
Newton (2018) argues that in counties where grazing CBVs are below county-level pastureland 
rents, the PRF indemnity payments for a full loss will not be enough to cover the minimum cost 
associated with accessing forage for supplemental feeding (e.g., say if they want to rent nearby 
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pastureland for supplemental feeding of their livestock). Pastureland rents seem to be a 
justifiable minimum value for the grazing intended use. 
 
Given these arguments, it seems reasonable for RMA to at least explore whether it is feasible to 
apply a minimum CBV value that is equal to a county-level or state-level measure of pastureland 
cash rent (perhaps in a previous year or based on historical average). There is a lag in the 
availability of NASS county-level and state-level pastureland rental data, which may limit the 
feasibility of applying a minimum value. However, a one-year lagged pastureland rent value 
from NASS (at the county- or state-level) as a minimum bound would still be reasonable (in our 
opinion). Applying this minimum (in conjunction with the other changes recommended in this 
report) may improve the risk mitigation benefits from the PRF product.  
 

Validating the HPM productivity factors against an alternative model 
 
In the current CBV methodology, HPM-derived productivity factors are utilized in the non-
irrigated haying and the grazing CBV calculations. In particular, a “district-state” productivity 
factor is used for calculating the non-irrigated haying CBV, and a “county-state” productivity 
factor is used for computing the grazing CBV. These factors were derived based on the NRCS 
HPM model so that estimates of the district-level non-irrigated haying CBV and the county-level 
grazing CBV are consistent with the inherent “productivity” of the pasture at these levels of 
geographic aggregation. The use of these productivity factors somewhat assures that the 
estimated CBVs at these levels are consistent with the inherent capacity of the land to produce 
pasture in these areas.  
 
Aside from the NRCS HPM, Williams and Travis (2019) have used the U.S. Forest Service’s 
“Rangeland Vegetation Simulator” (RVS) in their study that evaluates PRF weather index 
products using alternative drought indices instead of a rainfall index. Reeves (2016) more fully 
describes how the RVS works. Williams and Travis (2019, p. 633) describe the RVS as follows: 
“The RVS calculates annual rangeland production for the western and central United States by 
combining normalized difference vegetation index (NDVI) values with precipitation data and 
site-specific biophysical settings (Reeves 2016). The RVS is validated with direct measurements 
of rangeland production values from the National Resource Conservation Service Soil Survey 
Geographic dataset (SSURGO; Reeves 2016). RVS data are consistent from year to year and are 
available from 1984 to present, thus providing the most comprehensive assessment of rangeland 
productivity in the United States.” Given the above description of RVS, it seems that output from 
this model can serve as an alternative data source to at least validate the productivity values 
generated from the NRCS HPM. Comparisons of the resulting CBV values from the RVS vis-à-
vis the NRCS HPM can be conducted to see if there are any large discrepancies in the estimates. 
In the end, exploring an alternative source for productivity values can help improve the 
robustness of the CBV estimates.  
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Minor clarifications to the irrigated hay CBV and the grazing CBV procedure 
 
One issue with the irrigated CBV is the conceptual question of whether the irrigation cost should 
be multiplied by the average rainfall level to get the irrigated hay CBV, or is it more appropriate 
to multiply the irrigation cost by an estimate of the average amount of water pumped historically 
(in inches) in the geographical area of interest. It seems that the ‘insurable risk’ associated with 
irrigated hay should be tied more to the actual average water used rather than the average rainfall 
level.  Multiplying based on expected rainfall is from the notion that an irrigated producer will 
irrigate more than normal to make up for a shortfall from expected rainfall, which is why the 
CBV is set based on expected rainfall. For example, in a high rainfall area (e.g., 30 inches per 
year), a producer would only pump an additional 4 inches. However, in a drought year, they may 
pump 14 inches. For a more moderate average rainfall area (say 10 inches per year), a producer 
may routinely irrigate for an additional 35 inches, but the irrigated CBV only covers the 10 
inches per year average.  The logic above makes sense though it seems that in this example the 
irrigated CBV tends to overinsure irrigated areas with higher average levels of rainfall (e.g., the 
30 inches of rain example), and underinsure irrigated areas with lower average levels of rainfall. 
As mentioned above, all we are suggesting here is to simply re-evaluate this step.  Or perhaps 
base it on the historical “additional” pumping in severe drought events at minimum rainfall 
levels (i.e., the observed pumping in severe drought years relative to the “normal” pumping in 
“normal” rainfall years). Our point here is for RMA to simply evaluate further whether it is 
better to use average rainfall or some other “water quantity” to calculate the irrigated hay CBV.   
 
In addition, we note here that there is inconsistency in the non-irrigated hay CBV procedures 
relative to the grazing hay CBV procedure in terms of going from the state-level estimates to the 
final district-level estimates. In the non-irrigated haying CBV, the state-level non-irrigated hay 
yield was converted directly to a district-level yield estimate using the “district-state” conversion 
factor (derived from the NRCS HPM). Then, the district yields are multiplied with the state-level 
price estimates to get a non-irrigated CBV at the district level. On the other hand, for the grazing 
CBV, the state-level grazing yields and state-level “blended” grazing prices are first multiplied to 
get an initial state-level grazing CBV. A “county-state” conversion factor (also from NRCS 
HPM) is used to convert this estimate to a county-level CBV and then an average across counties 
within a district is used to generate a district-level CBV. For consistency in procedures, we 
suggest that the “conversion methods” used to derive a district-level CBV for non-irrigated hay 
and grazing be made consistent with each other. Perhaps the decision on which conversion 
procedure to use for both non-irrigated haying and grazing will depend on which “conversion 
factor” is deemed more accurate (either the district-state or county-state).   Note that the “factor” 
used in calculating the non-irrigated hay CBV is a “district-state” factor, while for the grazing 
CBV it is a “county-state” factor. In addition, for the grazing CBV, the county-level CBVs are 
aggregated up to the district-level (using county area as weights) to get a district-level grazing 
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CBV. This aggregation was not undertaken in the non-irrigated hay CBV. The difference in the 
“factors” used and the aggregation step for the grazing CBV would likely matter in this case. 
Nonetheless, our point is to simply re-evaluate these steps and perhaps make the calculations for 
non-irrigated haying CBV and grazing CBV more consistent with each other.  One approach to 
make both calculations consistent is to use the same “district-state” factor in the yield calculation 
step of the grazing CBV calculation procedure. Alternatively, the “county-state” factor (plus 
aggregation to the district) can be used in the last few steps of the non-irrigated haying CBV 
calculation. The choice depends on which “factor” is more reliable and accurate. 
 

Adjusting the productivity factor limits given the CBV calculation improvements?   
 
The PRF insurance contract includes an option where producers can choose a “productivity 
factor” (PF) between 0.60 and 1.50, which enables them to adjust the CBV up or down to make 
it more commensurate with their circumstances. This provides some flexibility to adjust the 
insurable value (i.e., insured liability) since the CBV value is estimated at a higher geographical 
aggregation (e.g., at the agricultural-district-level for grazing CBV), which does not necessarily 
coincide with individual farmer CBVs. The productivity factor is largely considered a 
“correction factor” to overcome the inherent limitations of the estimated CBV and allow the 
insureds to adjust the policy CBV estimates to make it coincide with their individual CBV. To 
some degree, it also allows PRF producers to adjust their liability commensurate to their basis 
risk (i.e., make it such a way that basis risk is minimized). For example, insureds can increase 
their individual CBV value if they think productivity (or yield) of their land is higher than the 
productivity (or yield) implied by the more aggregate CBV value offered in the PRF policy (or 
vice-versa).  
 
However, even if this is the intent behind the productivity factor theoretically, in practice most 
PRF producers simply pick higher PRF levels (e.g., at the state-level, PF averages are often 
above 1.0 and very seldom below; See Agralytica, 2014, p. 110-111).2 This behavior of picking 
the highest PFs is consistent with maximizing returns to insurance rather than the risk 
minimization objective of the PRF offering (See Goodrich et al. 2019; Cho and Brorsen, 2019).3 
A recent USDA-OIG report (USDA-OIG, 2019, p. 10-12) provided examples where insureds 
were able to pick the 150% productivity factor even if the productivity of the land based on 
NRCS data suggests that average productivity/yields in the insured land are substantially lower 
than the implied productivity/yields from the CBV.  

 
2 Note that the Agralytica (2014) report indicate that agents and producers generally like the flexibility afforded by 
the current PF levels to tailor the coverage to their individual productivities and premiums they are comfortable 
paying. Agralytica (2014) even suggested increasing the PFs above 150% in some locations, given the belief that 
most of the CBV values at that time are inaccurate (and likely underestimated). But it should be noted that CBV 
calculation methodologies have improved since 2014, and are likely more accurate than six years ago. 
3 In their analysis, Cho and Brorsen (2019) points out that lower PF choices are more “optimal” in a risk 
minimization framework as compared to an insurance return maximization framework. 
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Nonetheless, with improvements in the CBV calculations over the last five years (that improves 
accuracy and precision) and implementation of the minimum grazing CBV above, we believe 
that it is appropriate to reduce the range of available productivity factors in the PRF insurance 
offering. Similar area-based insurance plans offered by RMA that triggers on a county-yield 
“index”, such as the Area Risk Protection Insurance (ARPI), only have a productivity range 
between 0.8 and 1.2 (as compared to the 0.6 to 1.5 range in PRF). Hence, for consistency across 
index-based RMA product offerings and to align better with risk minimization behavior, we 
suggest narrowing the productivity factor to the 0.8 to 1.2 range.  
 
If the narrowing of the PRF range is implemented, it is important to monitor the effects and 
performance of the program from this change. First, as in the Agralytica (2014) report, it is 
important to continually examine the productivity choices of insured PRF growers. This analysis 
will give insight into whether it is still the case that most producers pick the higher coverage 
levels (around 1.2 or above) and not coverage levels below 0.9 (i.e., suggesting the 
appropriateness of increasing the lower limit to 0.8). Frequent analysis and monitoring of the 
impact of narrowing the productivity factor range on liability, premiums, and indemnity levels 
would also be valuable (especially in conjunction with the other recommendations in this report 
– setting a minimum grazing CBV, lowering coverage levels available, etc.).  There may be a 
concern that reducing the maximum PF limit may result in “drastic” increases in insured PRF 
acres. To address this issue, one can monitor and statistically estimate the relationship of PF 
choice and insured acres using the policy-level administrative data. This type of recurring 
analysis can give an insight into whether insured PRF growers increase insured acres when 
picking lower productivity factor levels. Even if RMA data on “insured PRF acres” is not a 
perfect measure of the total acres the producer has access to, the recommended analysis here 
would still provide some inferences of whether farmers that choose low productivity factors to 
increase the PRF acres insured. 
 
Second, for each county where PRF is offered, it would be useful to continually monitor and 
compare the implied yields (or productivity) from the NRCS productivity model or the US Forest 
Service RVS model (or other models) vis-à-vis the yields used in the CBV calculations.  In 
particular, the estimated yields used to calculate the non-irrigated haying and grazing CBVs for 
each county compared to the NRCS model yields). This exercise will help determine and avoid 
situations illustrated in the USDA-OIG (2014) report where implied productivity of the insured 
land based on the PRF contract choices of the grower (e.g., 150% productivity factor, etc.) is 
substantially higher than what the NRCS data (or other sources) indicate. In particular, one can 
also determine whether the estimated yields from productivity models are consistent with the 
implied yields used in calculating CBVs (and maintaining program integrity).   In conclusion, we 
believe that narrowing the productivity factor range offered in PRF is appropriate at this time, 
and continual monitoring of the effects of this recommendation is advisable.  
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Main CBV Recommendations 
 
Validating the HPM productivity factors against alternative models 

Recommendation:  The U.S. Forest Service’s “Rangeland Vegetation Simulator” can serve as an 
alternative data source to validate the productivity values generated from the NRCS HPM. 
Comparisons of the resulting CBV values from the RVS vis-à-vis the NRCS HPM can be 
conducted to see if there are any large discrepancies in the estimates. In the end, exploring an 
alternative source for productivity values can help improve the robustness of the CBV estimates.  
 
Modification of the County Based Value (CBV) 

Currently, there is no set minimum value for the district-level grazing CBVs used in the PRF 
contract. Therefore, it is possible for the district-level grazing CBV (used for a particular county) 
to be lower than the estimated NASS county-level pasture rental rate. Newton (2018), for 
example, has shown that there are cases in South Dakota where 2019 CBVs were up to 46 
percent lower than NASS state-level pastureland rent in 2018.  Based on research cited in our 
exploration of the CBV, we recommend RMA apply a minimum CBV value that is equal to a 
county-level or state-level measure of pastureland cash rent (perhaps in a previous year or 
based on historical average). Applying this minimum (in conjunction with the other changes 
recommended in this report) may improve the risk mitigation benefits from the PRF product.  

We also recommend that the grazing CBV be partitioned to differentiate improved pasture (or 
pastureland) from unmanaged rangeland.  To qualify as pastureland, evidence of fertilization 
and/or lime, seeding, weed control, or other pasture improvements would be required to receive 
a higher CBV for pastureland relative to rangeland.  A producer would be required to self-
certify that their land is pastureland or rangeland. Verification of pastureland would include 
input records showing “Management” of the land.  A distinction between rangeland and 
pastureland CBV would more accurately reflect productivity.  Evidence of cultural practices 
such as fertilization, weed control, and reseeding generally result in greater forage production 
and animal carrying capacity.   

 
The productivity differential estimates from the papers reviewed above (See section above titled 
“Rangeland and Pastureland CBV differences”) indicate that a rangeland-pastureland factor in 
the range of 60%-70% is justifiable as a “conservative” measure (especially in the Western 
States where there is a good mixture of unmanaged rangelands and managed pastureland). 
Hence, the State-level grazing CBV yield estimate can be adjusted downward by 30%-40% for 
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insureds that self-select and say that their PRF-insured land is unmanaged rangeland.4 On the 
other hand, the State-level grazing CBV yield estimate can be adjusted upward by 30%-40% for 
insured that self-selects and say that their PRF-insured land is managed pastureland. 
 
 Notwithstanding these recommendations for adjusting the State-level grazing yield in the 
grazing CBV calculations, the recommendation in this report of using a minimum grazing CBV 
value based on pastureland rents should still serve as the “floor” on the calculated CBV. That is, 
if the resulting district-level CBV with the downward adjustment (due to using unmanaged 
rangeland) is lower than the minimum CBV based on pastureland rental rates, then the minimum 
CBV based on pastureland rental rates will be the one that is applicable. 
 
 
Adjusting the CBV Productivity Range 
 
With improvements in the CB/V calculations over the last five years (that improves accuracy and 
precision) and implementation of the minimum grazing CBV above, we believe that it is 
appropriate to reduce the range of available productivity factors in the PRF insurance offering. 
Similar area-based insurance plans offered by RMA that triggers on a county-yield “index”, such 
as the Area Risk Protection Insurance (ARPI), only have a productivity range between 0.8 and 
1.2 (as compared to the 0.6 to 1.5 range in PRF). Hence, for consistency across index-based 
RMA product offerings and to align better with risk minimization behavior, we suggest 
narrowing the productivity factor to the 0.8 to 1.2 range.   
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Chapter 3 Task 2:  A review of the methodology used for the PRF rainfall 
index and premium rates.   

 

Pasture and Rangeland Literature Review 
 This section of the report provides a review of scientific literature related to the pasture and 

rangeland insurance product.  We begin with the origins of index insurance and then the 
rating of index insurance and then demand for index insurance.  We conclude with a 
discussion of recent advances in index insurance. 

Origins of index insurance 
 

The scholarly literature on index insurance has grown tremendously over the past 20 years. A 
complete review of that literature would be beyond the scope of this report. Instead, we will 
describe some of the seminal work on index insurance and then review more recent work of 
particular relevance to the PRF insurance product. 

Index insurance products can generally be classified into two broad categories: products 
based on indexes that measure aggregate losses over a group (e.g. Area Yield Protection, 
AYP or Area Revenue Protection, ARP) and products based on indexes that are believed to 
be highly correlated with losses (e.g., Pasture, Rangeland and Forage, PRF). With the former 
category, an index of group losses within a defined geographic region serves as a proxy for 
the losses of individual members of the group. The index must be based on data aggregated 
over a large enough scale that an individual policyholder cannot significantly influence the 
realized value of the index and hence, the indemnity. With the latter category, the variable on 
which the index is based (often, a measure of weather events) serves as an indicator or 
predictor of policyholders’ realized losses (Murphy et al., 2011). 

Why would an insurer offer index insurance instead of traditional, loss-based insurance? In 
many respects, traditional insurance is the most straightforward way to offer insurance 
protection because indemnities are based directly on the measurable losses experienced by 
the policyholder. But this direct connection between the loss experienced by the policyholder 
and the indemnity received can also create challenges. In some cases (e.g., pasture and 
forage), it is extremely difficult to measure the actual loss that has occurred. Other 
advantages of index insurance relative to loss-based insurance include less exposure to moral 
hazard and adverse selection and lower operational costs (since there is no need for policy-
specific underwriting or on-farm loss adjustment).  

The widely recognized limitation of index insurance products is that policyholders are 
exposed to basis risk. Technically, basis risk is the variance of the conditional distribution of 
the policyholder's losses given a specific value of the index. Since sufficient data are 



39 
 

generally not available to estimate this conditional distribution, practitioners tend to measure 
basis risk as to the linear correlation (or covariance) between the index and a policyholder's 
losses. However, the simple historical correlation between the index and losses may fail to 
accurately assess basis risk because the dependence may not be linear (Collier, Barnett, and 
Skees 2011). Practically, basis risk implies that a policyholder can receive an indemnity that 
is either greater than or less than the actual realized loss. It is even possible that the 
policyholder will suffer a loss and not receive any indemnity. Likewise, the policyholder may 
receive an indemnity without incurring any loss. 

Perhaps the earliest scholarly discussion of agricultural index insurance was Halcrow’s 1949 
article on area yield insurance published in the Journal of Farm Economics. Though Sweden 
introduced an area yield insurance program in 1961 and Quebec did the same in 1977, 
Halcrow’s insight received little attention in the United States until it was revived in a 1991 
article by Mario Miranda in the American Journal of Agricultural Economics. Using a 
Capital Asset Pricing Model (CAPM) conceptual framework, Miranda described how an area 
yield insurance program could provide risk protection for agricultural producers. Then, using 
yield data from west Kentucky soybean producers, Miranda provided empirical evidence of 
the efficacy of an area yield insurance product. 

The RMA first facilitated an index insurance offer in 1993. The product was an area yield 
insurance product (then known as the Group Risk Plan, GRP) for soybeans in selected states. 
In 1994, Congress mandated that GRP be expanded “to the extent practicable.” The product 
design and premium rating for GRP were described in Skees, Black, and Barnett (1997). An 
area revenue insurance product (then known as Group Risk Income Protection, GRIP) was 
first offered in 1999. 

Various studies have examined the empirical effectiveness of area yield or revenue insurance 
products. Some of the seminal studies were Hourigan, 1992; Smith, Chouinard, and Baquet, 
1994; Wang et al., 1998; Black, Barnett, and Hu, 1999; Barnett et al., 2005; and Deng, 
Barnett, and Vedenov, 2007. The findings from these studies have generally been that area 
yield insurance products can provide effective risk protection for many, but not all, crop 
producers. However, it is difficult for an area yield insurance product to compete with a 
highly-subsidized insurance product that makes payments based on farm-level losses.  

Over time, interest in agricultural applications of index insurance spread beyond products 
based on indexes that measure aggregate losses over a group to include products based on 
weather indexes that are believed to be highly correlated with losses. In 1988, George Patrick 
published an article in the Australian Journal of Agricultural Economics proposing rainfall 
insurance for wheat farmers in Australia. Skees and Zeuli (1999) proposed rainfall insurance 
products for Australian irrigation water management districts. Others proposed rainfall 
insurance to protect against agricultural losses in India (Hazell, 1992; Gautam, Hazell, and 
Alderman, 1994), Burkina Faso (Sakurai and Reardon, 1997), and Nicaragua (Miranda and 
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Vedenov, 2001). Weather index insurance products were made available to crop producers in 
India in 2003. 

In its most basic form, weather index insurance makes indemnity payments based on 
realizations of a specific weather variable (e.g., rainfall or temperature) over a defined 
period. The weather variable may be measured at a specific weather station or by other 
means (e.g., satellite). The policy will typically specify a threshold and a limit that establish 
the range of index values over which indemnity payments will be made. For an insurance 
policy that protects against unusually high realizations of the weather variable (e.g., excess 
rainfall or extremely hot temperatures), an indemnity is paid whenever the realized value of 
the index exceeds the threshold. The limit defines the level of the index beyond which no 
additional indemnity payments will be made. If the policy is protecting against unusually low 
realizations of the weather variable (e.g., drought or extremely cold temperatures) an 
indemnity is made whenever the realized value of the index is less than the threshold with the 
limit set lower than the threshold (Barnett and Mahul, 2007).  

Two seminal articles regarding agricultural applications of weather index insurance were 
Martin, Barnett, and Coble’s 2001 article titled “Developing and Pricing Precipitation 
Insurance” in the Journal of Agricultural and Resource Economics and Turvey’s 2001 article 
titled “Weather Derivatives for Specific Event Risks in Agriculture” in the Review of 
Agricultural Economics. After describing the design and pricing of a rainfall index insurance 
product, Martin, Barnett, and Coble demonstrated how such a product could be used to 
protect against the risk of excessive rainfall before and during cotton harvest in the mid-
South region of the United States. Turvey, likewise described the design and pricing of 
weather index insurance products for extreme rainfall or extreme temperature events. Turvey 
then demonstrated the efficacy of weather index insurance to protect against corn, soybean, 
and hay yield losses in Ontario. 

Other early articles on weather index insurance include Mahul’s 2001 article on factors that 
impact the optimal choice for various contract parameters, van Asseldonk’s 2003 article 
evaluating agricultural applications of temperature-based weather index insurance in the 
Netherlands, and Vedenov and Barnett’s 2004 article analyzing the efficiency of weather 
index insurance to insure corn, cotton, and soybeans in six U.S. crop reporting districts. A 
common in empirical studies was that the risk-reducing performance of weather index 
insurance varied widely across crops and regions. In one of the first studies to extend beyond 
crop production, Deng et al. (2007) analyzed the potential for insurance based on a 
temperature-humidity index to protect against dairy production shortfalls in the southern U.S. 

Much of the literature on weather-based index insurance has focused on lower-income 
countries. Economists have long recognized that high transaction costs relative to the amount 
of insurance liability make traditional loss-based agricultural insurance products unworkable 
in most lower-income countries. Area yield index insurance is also often not possible due to 
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limited availability or reliability of official yield data aggregated to a regional level. Since 
weather data are available for many lower-income countries from either ground-based 
weather stations or satellite platforms, weather index insurance is often viewed as a 
potentially viable insurance alternative.  

The literature on agricultural applications of weather index insurance in lower-income 
countries is far too extensive to review here. The following are among the earliest studies in 
this area:  Skees 1999; Skees, Hazell, and Miranda 1999; Skees 2000; Skees et al. 2001; 
Hess, Richter, and Stoppa 2002; Varangis, Skees, and Barnett 2002; Skees and Enkh-
Amgalan 2002; Skees, et al. 2005; Hess et al. 2005; Lilleor et al. 2005; Skees, Hartell, and 
Hao 2006; Hazell and Skees 2006; Kazianga and Udry 2006; Gine´, Townsend, and Vickery 
2007; J. Skees, Hartell, and Murphy 2007; Chantarat et al. 2007; and, Shynkarenko 2007. A 
common finding in these and subsequent studies is that for some crops in some regions, a 
carefully constructed weather index insurance product can provide significant risk reduction. 
Nevertheless, absent large subsidies, uptake of weather index insurance at the farm level has 
been quite limited. Collier, Barnett, and Skees (2011) is a good resource for information on 
the data required to develop and price weather index insurance while Murphy et al. (2011) 
describe the challenges associated with scaling up weather index insurance offers in lower-
income countries. 

Rating PRF insurance 
 

The current RMA premium rating methodology for the PRF product is described in the 
following documents: (a) the original developer rating methodology document (RMA, 2005), 
and (b) the PRF review conducted by Agralytica (Agralytica, 2014). A PRF premium rate is 
calculated for each grid, interval, and coverage level available to be insured (e.g., over 
400,000 unique rates for the rainfall index-based PRF annually). Rainfall index data are 
available from 1948 onwards and serves as the basis for the premium rate calculation.  
 
The premium rate for each insurable unit is essentially based on a burn rate (BR) approach, 
which is simply the average loss over all historical values of the rainfall index (i.e., where the 
“loss” is just defined as the difference between the actual rainfall index amount and the 
“trigger” index level if index < trigger, zero otherwise). Though the BR method serves as the 
foundation for PRF ratemaking, several parametric distribution-based approaches are also 
utilized (e.g, truncated normal (TN), Black-Scholes (BS), and Gram-Charlier (GC) 
approaches) to supplement rates derived from the BR method. Specifically, rates from these 
distribution-based methods are used to generate upper and lower bounds on the BR-based 
raw rates (e.g., if BR is less than the minimum value from TN, BS, or GC, the smallest 
minimum value among the three distribution-based methods will be used; the same logic 
applies for the maximum). Additional smoothing and catastrophic loading procedures are 
then implemented to calculate the final rates. 
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The literature related to the rating of rainfall-index-based pasture insurance products has been 
limited. However, note that Agralytica (2014) carefully reviewed the rating methodology for 
the PRF product offered by RMA and found that the rating methods used for the rainfall-
index-based coverage in PRF were generally appropriate (Agralytica, 2014 p. 102), though 
the report provided some minor suggestions that can potentially improve rating performance 
(e.g., eliminate smoothing and use Limited Expected Value Function rather the BS formulas). 
The Agralytica report also expressed concerns about the high frequency of indemnity 
payments for the PRF program. 
 
Outside of the aforementioned Agralytica (2014) report, we only found one paper that 
specifically touches on rating issues for rainfall index (RI) based pasture insurance coverage 
– Nadolnyak and Vedenov (2013). Nadolnyak and Vedenov (2013) specifically examine the 
implications of utilizing information on El Nino-Southern Oscillation (ENSO) forecasts in 
the PRF premium rating process. They find that not using ENSO forecast information in the 
rating process can result in intertemporal adverse selection when this ENSO information is 
used by insureds in their participation decisions (i.e., purchasing more coverage when 
expected payouts are high (based on ENSO information), purchasing less coverage when 
expected payouts are low). Therefore, Nadolnyak and Vedenov (2013) recommend 
calculating an ENSO “forecast-conditioned” premium for the PRF insurance product, 
especially for areas nearer the coast (i.e., particularly the Gulf Coast, given that the study 
focused on the Southeastern US as the empirical application). 
 
Most of the published studies that consider rating methodologies for a rainfall-index-based 
insurance product do not specifically focus on the pasture and rangeland case and cover a 
wide variety of crops and contexts. As already mentioned in previous sub-sections of this 
review, an example is the work of Martin et al. (2001), which describes the design and 
pricing of a rainfall insurance product to protect against the risk of excessive rainfall for US 
cotton. Other general rainfall-index insurance articles that describe a variety of rating 
approaches include (among others): Turvey (2001) for several crops in Canada, Vedenov and 
Barrett (2004) for a variety of US commodity crops, Deng et al. (2007) for US dairy, Chen et 
al. (2017) for corn in China, Zhou et al. (2018) for US corn, and Muna et al. (2019) for rice 
in Indonesia. Rating methodologies developed or utilized in these studies range from using 
copulas, parametric distribution models (e.g., Gamma), nonparametric methods (e.g., burn 
rate), mixture models, and combinations of various approaches (where the approach largely 
depends on data availability).  

 
   Demand for PRF insurance  

 
The demand for crop insurance has a lengthy history.  In the modern era, this research was 
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often predicated on understanding why farmers were not purchasing subsidized individual 
coverage yield insurance.  Goodwin (1993), Smith and Baquet (1996), and Coble et al. 
(1996) are early examples of this work.  Most of this work found an inelastic demand for 
insurance and some evidence of producers and RMA having differing perceptions of risk.  As 
crop revenue insurance became more popular after 1996, researchers turned to understand the 
demand for this new form of crop insurance.  Shaik et al. is an example of this literature. 
 
Many of the development papers confirm the basis risk problem (Barnett and Mahul (2007). 
Jensen, Barrett, and Mude (2016) examine the limited acceptance of livestock index 
insurance in a development context. In particular, they focus on direct measurements of basis 
risk.  They used longitudinal household data to determine which factors affected the demand 
for index-based livestock insurance. They find that while both price and the non-price factors 
studied previously are important, basis risk and spatiotemporal adverse selection also play a 
major role in determining demand. Kost et al (2012) note that in variable topography regions, 
basis risk is likely more problematic.  Elabed, and Carter (2015) note the basis risk problem 
of index insurance and investigate compound-risk aversion, and ambiguity on the willingness 
to pay for index insurance.  They note that an index insurance contract appears to the farmer 
as a compound lottery, with uncertainty about individual production outcomes, as well as 
about the validity of the index as a reflection of individual losses. They show that this 
compound lottery structure reduces the demand for index insurance. Field experiments with 
cotton farmers in Southern Mali found that almost 60 percent of farmers are compound-risk 
averse and that the distribution of compound-risk aversion is such that it would nearly cut in 
half the potential demand for the standard index insurance contracts.   
 
Norton et al. (2014) investigated the demand for differing coverage levels of index insurance.  
They used experimental games with smallholder farmers in Ethiopia. Participants in the 
games allocated money across risk management options including index insurance. 
Participants preferred insurance contracts with higher frequency payouts and insurance over 
other risk management options, including high-interest savings. The authors argue the 
preference for higher frequency payouts affects commercial sales. Wang et al. (2020) 
examine coverage levels and other attributes. They use a labeled choice experiment method 
to investigate Chinese smallholder corn growers’ preferences for alternative insurance 
designs. In addition to traditional yield insurance, they examine farmers’ willingness to pay 
for coverage levels in price, revenue, and weather index insurance, which are currently at the 
experimental stage in China. They found farmer preferences for these various types of 
insurance to be heterogeneous. On average, farmers are willing to pay for all types of 
insurance and for additional coverage but only at the current high subsidy level. They explore 
heterogeneity in willingness to pay and find that farmers’ positive past insurance experience 
plays an important role in their demand for insurance.  
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Liu et al. (2019) estimate farmers’ willingness to pay (WTP) for a hypothetical excess 
rainfall index insurance contract.  In particular, they examine whether recent experience with 
catastrophic flooding influences farmers’ attitudes towards the insurance product. They find 
that farmers from flooded areas have a higher WTP for index insurance than farmers from 
non-flooded areas. 
 
Several studies have noted non-economic factors influencing index insurance demand. Porth, 
et al. (2015) attempt to explain the factors affecting farmers’ willingness to purchase weather 
index insurance for crops in China, in the Province of Hainan.  They conduct a survey of 134 
farmers in Hainan, China, regarding their willingness to purchase weather index insurance. 
The results show that trust of the insurance company is among the significant factors that 
affect the willingness of farmers to purchase weather insurance. Patt et al. (2009) have a 
similar conclusion that the trust that people have in the insurance product and the 
organizations involved in selling and managing it strongly affects demand. They argue that 
data from India, Africa, and South America show that these factors may be more important 
than the economic factors in influencing demand. Gaurav, Cole, and Tobacman (2011) 
focused on farmer education and the demand for rainfall insurance in India.  They 
specifically researched the implication of financial literacy as a determinate of insurance 
demand. The authors found that financial education has a positive and significant effect on 
rainfall insurance adoption, increasing take-up from 8 percent to 16 percent. Also, a money-
back guarantee has a consistent and large effect on farmers' purchase decisions.  
 
Ifft, Wu, and Kuethe (2014) examined the impact of publicly supported insurance on 
agricultural land values. Implicitly this analysis relates to the demand for subsidized 
insurance. The analysis employs confidential, nationally representative panel data on field-
level pastureland values and exploits a natural experiment provided by gradual introduction 
of the Pasture, Rangeland, and Forage Insurance Pilot Program. They use a field-level fixed-
effects model that controls for several time-variant factors and find that insurance availability 
is associated with an increase of at least 4 percent in pastureland values. This increase is 
comparable with increases generated by other government programs but is much smaller than 
the total farmland value increases experienced in recent years. 
 
The study most directly applicable to the U.S. PRF program is likely that of Goodrich, Yo, 
and Vandeveer (2019).  These authors specifically examine PRF participation in Kansas and 
Nebraska from 2013 to 2017.  They pay particular attention to the intervals chosen by 
purchasers of the PRF product. They note many producers purchase insurance that provides 
coverage outside the forage growing season.  Empirically this behavior appears to be 
growing over time.  Conceptually, the authors note that because the subsidy rate is equal 
across all 2-month intervals and the intervals in the non- growing season have higher 
premiums, allocating more liability to the non-growing season increases the expected profit 
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(assuming actuarial fairness of the premium). The authors conceptualize purchase in non-
growing periods may be attributed to a less risk-averse preference.  However, they suggest 
that premium subsidies and producer returns associated with non-growing season months are 
often greater than those for growing season months. The authors also conclude crop 
insurance agents may be suggesting strategies for participants to maximize the chance of 
receiving an indemnity by placing some of their liability into non-growing season months.  
 

Advances in index insurance since 2010 
 

As mentioned in the first section of this literature review, there has been tremendous growth 
in the number of studies on agricultural index insurance over the last twenty years. Review 
articles by Miranda and Farrin (2012), Carter et al. (2014), Di Marcantonio and Kayitakire 
(2017), and Jensen and Barrett (2017) have all carefully summarized advances in the extant 
literature on agricultural index insurance, examined experience with agricultural index 
insurance in various countries, and identified lessons learned and challenges for the future. 
But note that these articles primarily focused on experience with agricultural index insurance 
in developing countries (though some of the general issues discussed apply to a developed 
country context as well). In general, these review articles pointed out that agricultural index 
insurance has great potential as a risk transfer mechanism for poor agricultural households in 
developing countries. However, a common observation is that the “track records” of these 
agricultural index insurance offerings have largely been disappointing. Each of these review 
papers then goes on to discuss the potential problems (or issues) that have likely caused these 
disappointing results in developing countries and make suggestions on how these issues can 
be addressed. Recommendations for future actions and research agendas to improve the 
performance of agricultural index insurance in developing countries are discussed. 
 
Most of the aforementioned review articles divide the issues affecting the disappointing 
performance of agricultural index insurance in developing countries into the demand-side 
and supply-side factors. The demand-side factors frequently mentioned are: premium 
affordability, lack of trust in insurance providers, financial literacy of target households 
(linked to poverty levels), cognitive and behavioral issues (e.g., ambiguity aversion, 
compound risk aversion), and general low willingness to pay (or demand) for these products. 
For this report, the more pertinent lessons from these review papers may be the supply-side 
factors that have influenced the performance of index insurance programs in developing 
countries. The most common supply-side issues mentioned are: basis risk (and related quality 
of index design issues), lack of quality data, institutional and government support issues (i.e., 
lack of enabling environments, delivery mechanisms, regulatory mechanisms, etc.), and 
issues with reinsurance markets (e.g., reinsurance charging high uncertainty premiums, 
driving up index insurance premiums).   
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As would be expected, all of the review articles cited above overwhelmingly raised the 
supply-side issue of basis risk (as related to the quality of the product design) and discussed 
ideas that may help reduce it. Dalhaus and Finger (2016) categorize basis risk into three 
components: spatial, temporal, and design. Spatial basis risk occurs when the index is not 
measured at the same location as the underlying insured crop is situated. This, for example, 
occurs when indices are based on measurements from remote weather station(s) far from the 
insured crop. Temporal basis risk emerges due to a biased temporal aggregation of 
observations, mainly because observations are aggregated into months (or seasons or years), 
while the risk vulnerability of plants is more related to plant phenological phases (Conradt et 
al., 2015; Dalhaus et al., 2018). Design basis risk is present when the chosen underlying 
index is not a good approximation of the underlying sources of yield or revenue variability. 
Given these basis risk categories, much of the recommendations put forth by the review 
articles mentioned above try to address some aspect of these basis risk types. 
 
Carter et al. (2014) suggest that solutions that can minimize basis risk can be classified as 
technological, contractual, and institutional. Much of the technological solutions involve the 
collection and use of better quality data that can further reduce spatial, temporal, and design 
risks. Technological suggestions in this vein include the use of indices with finer resolutions 
(e.g., gridding, spatial interpolation, etc.), use of more advanced satellite and remote sensing 
images (as the primary or a complementary index), and use of mobile weather stations (to 
increase coverage). Satellite and remote sensing data are viewed as potential paths to reduce 
spatial basis risk (e.g., better spatial coverage), temporal basis risk (e.g., better coincide index 
to the timing of loss), and design basis risk (e.g., may better correlate with actual losses). But 
note that empirical evidence as to the performance of these satellite or remote sensing-based 
index insurance designs is still lacking. Some contractual solutions suggested by Carter et al. 
(2014) include the use of secondary, backup, or audit indices (or triggers). The use of index 
insurance at higher levels of aggregations (e.g., meso-level index insurance for cooperatives) 
has also been recommended.  
 
Contractual changes that better match the time window of actual crop losses to the time 
window for the index offering have also been shown to improve temporal basis risk. For 
example, Conradt et al. (2015), Dalhaus and Finger, 2016, and Dalhaus et al., 2018 have 
shown that index insurance contracts that are more closely tied to the phenological growth 
phases of the underlying cash crop being insured are better able to insure losses (more on this 
below as it relates to PRF). Lastly, institutional solutions include efforts to develop 
institutions (governmental or otherwise) to improve quality standards for index insurance 
offerings, better targeting of initial pilot sites, better design of subsidies (e.g., smart 
subsidies), support of informational and educational efforts, bundling index insurance 
offerings with credit (or other financial instruments), and further research on the impacts of 
index insurance (as well as behavior towards risk and insurance).  Another common 
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recommendation is to conduct research that measures basis risk for particular index products 
offered, which involves the collection of farm-level yield/loss data in index coverage areas to 
assess the performance of these products.    
 
Even though there is a robust literature on agricultural index insurance and there are several 
review articles that have summarized advances and identified limitations/challenges, studies 
that specifically focused on index insurance for pasture, rangeland, and forage (PRF) (or so-
called grassland-based agricultural systems) have been limited. Nonetheless, the review 
article by Vroege et al. (2019) provides an important discussion of advances and challenges 
with regards to index insurance for PRF in the US and Europe. First, Vroege et al. (2019) 
find that three different insurance types exist in the US and Europe: area-yield-based (like 
Area Risk Protection Insurance (ARPI) in the US), weather-index-based, and satellite-
imagery-based. They find that the single weather-index-based types are the predominant type 
offered for PRF coverage. Second, Vroege et al. (2019) point to the potential of using 
advances in satellite and remote sensing technologies in developing PRF index insurance 
products. The article noted that indices based on satellite or remote sensing measures related 
to yields and the plant growth environment have the potential for innovative index insurance 
designs.  
 
Recent studies by Bacchini and Miguez (2015) in Argentina, Roumiguie et al. (2017) in 
France, and Jensen et al. (2019) in Kenya also largely point to the potential effectiveness of 
offering satellite-based index insurance contracts. In particular, a recent paper on the PRF 
design in the US by Williams and Travis (2019) find that a PRF index insurance offering 
based on a drought index performs better than when a rainfall index is used (as is currently 
done). Williams and Travis (2019, p. 629) further suggest that “drought indices have a higher 
correlation with range production, a tendency to incentivize growing-season protection, more 
even geographic distribution of risk, reduced policyholder ability to seek higher payments 
through strategic coverage choices, and increased provider ability to adjust payment patterns 
to reduce the risk of nonpayment given loss.”  
 
However, Vroege et al. (2019) still note that past index insurance offerings based on satellite 
images of the normalized difference vegetation index (NDVI) have had limited success. 
Thus, Vroege et al (2019) recommend further study and development of a satellite-based 
index design that: (a) has an area-yield format using alternative satellite measures of 
vegetative growth (e.g., more transparent measures than NDVI such as the Forage Production 
Index (FPI) in France that measures the fraction of the ground covered by grass), (b) has an 
area-yield format that uses imagery to supplement index construction, (c) uses a satellite-
imagery-based weather index (rather than a satellite-based measure of the vegetation itself 
like NDVI), and (d) has a double-trigger approach where the trigger is based on satellite 
imagery vegetation and/or weather measures. Even with these recommendations, however, 
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the authors point out that the use of more complex indices that can reduce basis risk may 
result in reduced transparency and possibly increased moral hazard (e.g., this tradeoff exists 
especially for vegetative indexes of high resolution). 
 
The Vroege et al. (2019) paper also highlighted better matching of phenological growth 
stages of the underlying crop to the structure of the index insurance window(s) as another 
potential avenue for reducing basis risk (specifically, temporal basis risk) and improving the 
performance of agricultural index insurance. As already alluded to above, Conradt et al. 
(2015), Dalhaus and Finger (2016), and Dalhaus et al. (2018) have shown that index 
insurance contracts that are more closely tied to the phenological growth phases of the 
underlying cash crop being insured can reduce temporal basis risk and perform better (e.g., 
better downside risk protection).  
 
Since Yu et al. (2019) find that spatial basis risk for PRF in Kansas and Nebraska is likely 
less important relative to temporal and design basis risks, further improvements in PRF 
contract structure in terms of more closely tying the PRF contract design to the most 
vulnerable PRF growth phases may help improve performance. Note that in the current PRF 
design, insureds can choose to insure at least two fixed two-month intervals (as long as they 
are not adjacent) and can assign coverage levels and liability weights on each period insured. 
However, Belasco and Hungerford (2018) find that in the US Mountain West region 
producer selections of time intervals are spread fairly evenly throughout the year, despite 
rainfall during late spring and early summer being the most critical to grass growth in this 
region. Many producers choose to insure during the winter months despite little evidence that 
forage production is impacted by snowpack (Frank, 1973). In a study that explores optimal 
interval choice for PRF in South Dakota, Diersen et al. (2015) suggest that the most risk 
efficient intervals are May-June and July-August and these choices are most consistent with 
the desire to have payments that offset the highest expected forage risk. Westerhold et al. 
(2018) also find that intervals that coincide with the actual growing season in Nebraska are 
the ones where PRF provides the largest risk reductions. This study recommended dropping 
intervals in the PRF contract that do not coincide with the growing season since these 
intervals tend to be used as an income maximizing strategy rather than for risk reduction. 
Maples et al. (2016), in a study of the Rainfall Index Annual Forage pilot program (RIAFP), 
which is similar in structure to the PRF offering, find that the rainfall index used has a high 
correlation with actual rainfall, but does not correlate very well with actual forage yields in 
their data (e.g., design basis risk). Maples et al. (2016, p. 47) also suggest that the 
performance of RIAFP may improve by including intervals that closely match the time of 
production. In general, these studies seem to suggest that there may be merit to exploring 
PRF contract design modifications with regards to PRF intervals (e.g., intervals offered, 
interval lengths, interval availability, interval weight limits, and available interval coverage 
level choices) being more closely matched to the region-specific growing season (or 
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phenological growth states). Modifications here may also help address concerns about the 
frequency of “shallow” PRF payments across different intervals. 
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Chapter 4 Review and analyze the methods used in the development of 
the expected rainfall amount 

 

Discussion of Data 
 

The PRF product bases coverage on recorded precipitation made across an extensive 
network of weather stations.  The specific source for the accumulated rainfall data used to 
construct the rainfall index is the National Oceanic and Atmospheric Administration’s 
(NOAA) Climate Prediction Center (CPC).  These data are available back to 1948 and 
consist of spatially smoothed and interpolated measures of monthly rainfall.  These data are 
smoothed to provide a resolution of 0.25 degrees, which is approximately 28 square 
kilometers.  The CPC data only report precipitation and do not consider other weather 
variables that may also be relevant to the condition of pasture, rangeland, and forage.   
 
In a separate department of NOAA, the National Climate Data Center, a similar gridded set 
of data is available.  These data also include temperature (monthly high, low, and average) 
and report data back to 1895.  The NCDC data are available on a much finer grid, providing 
measures at the 1/24th degree level of resolution (about a 4 square kilometer grid).  Thus, the 
resolution of the NCDC data is about 36 times greater than that of the CPC.  Discussions 
with the NOAA scientist in charge of providing the NCDC data, Russell Vose, indicated 
that the two alternative sources of weather data are largely independent and are constructed 
by different teams using different smoothing algorithms.  Concerns have been raised as to 
the timeliness of the NCDC data (i.e., the time lag associated with providing near real-time 
weather observations) and the extent to which the climate data may be subject to 
retrospective revisions.  We do not believe that such concerns necessarily present any 
legitimate barriers to basing coverage on the NCDC data.5 
 
Finally, other suitable weather data sets are publicly available and could be used to develop 
rates and terms of coverage for PRF.  NOAA produces a couple of data sets that are in 
addition to those noted above.  Primarily, the PRISM data are synthesized from NOAA’s 
station-level data and are available from Oregon State University.  These data are essentially 
analogous to the NCDC data.  The data are also provided on a 4 square kilometer grid and 
include precipitation, minimum temperature, maximum temperature, and average 
temperature.  Station-level data, such as NOAA’s NCEI (National Centers for 
Environmental Information) data, also offer detailed data on a worldwide range of climate 

 
5 In an email exchange, Dr. Vose reported that the NCDC data are released on the first day into the month 
subsequent to the observations to coincide with the monthly Climate Report.  He also indicated that the data are 
typically not subject to revisions once released.   
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variables.  Station data could certainly be interpolated as is the case for the existing CPC 
and NCDC data and therefore used to form a grid.  However, we see no utility in repeating 
the spatial smoothing used by NOAA to grid the NCDC and CPC data for the station-level 
data.   
 
In a fashion similar to that considered for the NCDC data, we aggregated the PRISM 
precipitation data and undertook a comparison to the CPC data currently in use.  A 
comparison of the CPC and aggregated PRISM data are presented below.  The comparison 
indicates that, again, similar differences in the alternative measures of precipitation are 
apparent.  The degree of difference appears to be slightly higher in the case of the PRISM 
data, though both diagrams indicate substantial differences, even in very dry or very wet 
conditions.  Finally, we directly compared similarly aggregated CPC and PRISM data.   
 
The differences in precipitation measurements obtained from the alternative sources have 
been noted in the literature.  Gao et al. (2017) compared the NCDC, PRISM, and data 
consolidated from the NEXRAD weather monitoring system.6  Figure 4-7 reproduces a 
diagram from their paper that demonstrates the differences observed in a comparison of 
NEXRAD and PRISM data.   
 
We see no reason to necessarily prefer one data source over another.  Absent any “ground-
truthing” that would be made by comparing to actual precipitation, there is no tangible way 
to compare one data set to another.  The advantages of PRISM and NCDC data include a 
finer (4km) grid and a much longer history.  Further, these two data sets contain additional 
climate variables, including temperature extremes. If, at some point in the future, an index 
that considers both temperature and precipitation could be constructed, the alternative 
NCDC data might offer advantages.  This would require the construction of an index that 
accurately specifies the relationship between forage output, heat, and precipitation.  We 
considered state-level yield and price data to evaluate the relationship between heat, 
precipitation, and hay yields.  Likely because of the very aggregate nature of the NASS 
yield data (at the state level), we were unable to adequately define an index that relates both 
temperature and precipitation to hay yields, even though the relevant literature has 
determined that both variables are relevant to hay yields.   
  
One alternative to incorporating temperature into the PRF coverage would be to establish 
dual thresholds that provide a dual trigger that would result in indemnity payments.  If a 
threshold of extreme temperature beyond which hay is damaged could be defined, it may be 
possible to include a temperature trigger that would also result in indemnities.  For example, 

 
6 Gao, J., A. Y. Sheshukov, H. Yen, and M. J. White. “Impacts of alternative climate information on hydrologic 
processes with SWAT: A comparison of NCDC, PRISM and NEXRAD datasets,” Catena, 156, September 2017, 353-
364. 
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if it could be established that hay yields fall, regardless of available moisture, at temperature 
maximums of 95 degrees or higher, an indemnity could be paid solely based on the high 
temperature.  Rating such coverage would be trivial in that it could be handled exactly as the 
rainfall index is currently applied.  However, much as is the case with the County Base 
Values (CBV), the payoff schedule is problematic.   
 
An additional finding that merits discussion relates to any differences that may exist 
between the NCDC and CPC sources of precipitation.  We aggregated the finer NCDC 
precipitation data to a similar level of aggregation underlying the CPC data and compared 
the two alternative measures of monthly rainfall.  Figure 4-1 illustrates relationships 
between the two alternatives across a wide geography that includes a large portion of the 
Corn Belt and Great Plains.7  The figure demonstrates the fact that alternative rainfall 
measures can be very different.  This naturally reflects the differences in smoothing and 
reporting algorithms.   
 
We believe that this does raise an important policy consideration for RMA.  The differences 
highlight the fact that alternative measures of rainfall at specific points in the network of 
Grid Codes currently used by the RMA (from the CPC data) can be very different.  This 
challenges the fundamental framework of basing coverage on a finely defined grid.  If 
pasture and rangeland are sensitive to precipitation shortfalls, one would need an accurate 
measure of precipitation for establishing the terms of coverage.  The comparison of the 
alternative NOAA sources on monthly rainfall indicates that the relationship between 
measured rainfall and hay and pasture yields is inaccurate.  This is because significant 
differences between two equally valid measures of rainfall are apparent and the accuracy of 
either measure is unknown.  This is a natural result of using synthesized data where the data 
are generated using different methods.   
 
One would expect that these differences would be much smaller for more aggregated data.  
Figures 4-2 and 4-3 present the two alternative measures of monthly rainfall aggregated to 
the county and state levels, respectively.  The differences do indeed diminish when a higher 
level of aggregation is considered, though meaningful differences persist across aggregation.  
Of course, alternative sources of the county and state level rainfall measurements are 
available.8  We recommend that RMA consider basing coverage on rainfall measured at a 
higher level of aggregation—possibly the county or NOAA weather district.  Using district-
level data has another important advantage in that an array of different weather variables, 
including numerous soil moisture and drought indicators, are available.  Such variables may 

 
7 We included the area spanned by longitudes between -102 and -98 degrees and latitudes between 40 and 44 
degrees.  Figure 2-4 below illustrates this area, which also formed the basis for our extensive evaluation of 
premium rates.  We aggregated all NCDC grid points that were within 15 kilometers of the centroid of the CPC grid 
points. 
8 The NCDC reports county level data on rainfall and precipitation.   
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exhibit a stronger relationship with pasture, rangeland, and hay yields.     
 

Trend Analysis 
 
The extent to which measurable changes in precipitation patterns may exist is also an 
important consideration.  Such changes may appear as statistically significant trends or 
changes in patterns of seasonality, or both.  We randomly selected 100 grid IDs and fit the 
trend and seasonal cycles to each of the points using the CPC data from 1948-2017.  We 
used a first-order Fourier series expansion to capture cyclical seasonality patterns across 
different months of the year.  Examples of the predicted trend and cyclical patterns are 
presented below in Figures 4-7 through 4-9.  It is important to note that any deliberate 
adjustments to compensate for any implied trend or structural breaks reflecting climate 
change would necessarily lower premium rates.  Such an adjustment removes variability 
from the precipitation data and thus decreases the amount of unexplained variability in 
historical precipitation patterns.  In light of the considerable debate surrounding the climate 
change issue and the effect of lowering premium rates, we do not recommend explicit 
changes that would remove trends or that would account for structural change unless such 
changes are large and unambiguously apparent.  The existing scientific evidence as well as 
the following statistical tests of trends and structural change do not, at present, provide such 
unambiguous conclusions regarding climate change and we thus do not recommend any 
changes to the sample sizes or incorporation of trends or structural change.   
 
Table 4-1 presents only the trend parameter estimates for the 100 randomly selected IDs.  
The results indicate a statistically significant trend effect in most cases, although the trends 
that are implied are almost always very small.  The statistical significance of the trend 
parameters reflects the significantly large number of monthly observations available for 
analysis.  We do not recommend any changes in current rating procedures that would 
incorporate these small trend effects.   
 
We also divided the precipitation data into two halves and considered standard Chow tests 
of structural changes in the seasonal and trend components.  The results of these tests are 
presented in Table 4-2.  The Chow test results suggest structural breaks in a minority of 
cases.  In light of the impact of lowering rates and that there is greater ambiguity regarding 
the effect of climate change on rainfall intervals than for temperature and storm intensity, 
we do not recommend incorporating structural breaks into the rating process.   
 

Data Recommendations 
 
RMA should continue to use the NOAA CPC precipitation data.  Alternative data sets 
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(PRISM, NCEI, NEXRAD, NCDC) offer no real advantages and, in the case of the NCEI, a 
disadvantage in that the data are not “gridded” but rather are reported at the station level. 
The absence of any “ground-truthing” obviates any tangible approach to selecting one data 
set over another on the grounds of accuracy. Each of the alternatives exhibits significant 
differences concerning the CPC data currently used (and with one another).  These 
differences must be acknowledged but we recommend no changes to the current data used to 
rate and design coverage. 
 
Although trends and structural breaks are sometimes identified in the precipitation data, 
such changes over time are always small and are not consistent across different grid IDs.  
Any attempt to explicitly account for trends or structural breaks will have the effect of 
lowering premium rates.  In the absence of firm scientific conclusions regarding climate 
change effects on rainfall periods, we recommend that RMA continue to use the full 1948-
present CPC data in its entirety and without explicit adjustments meant to reflect climate 
change. 
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Table 4-1 Trend Parameter Estimates in Precipitation Data 
NOAA   Value  Statistically 
GRID Trend Standard t Probability Significant 

ID Estimate Error Statistic t-Stat p<.05 
18129 1.9968 0.8982 2.22 0.0265 * 
18415 0.3771 0.5662 0.67 0.5055   
18695 0.3107 0.3513 0.88 0.3768   
18714 -0.5346 0.5388 -0.99 0.3214   
18990 1.1471 0.2896 3.96 0.0000 * 
19013 0.1648 0.5456 0.3 0.7626   
19014 0.2533 0.5276 0.48 0.6312   
19021 1.4258 0.6639 2.15 0.0320 * 
19033 2.2183 0.8821 2.51 0.0121 * 
19284 1.0125 0.3546 2.86 0.0044 * 
19317 0.5197 0.5824 0.89 0.3724   
19335 2.5977 0.9114 2.85 0.0045 * 
19336 1.7356 0.908 1.91 0.0563   
19922 0.2414 0.6638 0.36 0.7162   
19926 1.7016 0.76 2.24 0.0254 * 
19939 3.2134 0.9805 3.28 0.0011 * 
20218 0.9314 0.5901 1.58 0.1148   
20234 2.0079 0.9093 2.21 0.0275 * 
20786 0.043 0.3988 0.11 0.9142   
20803 1.0154 0.3682 2.76 0.0059 * 
21109 1.4307 0.4376 3.27 0.0011 * 
21119 1.7537 0.6249 2.81 0.0051 * 
22029 2.2398 0.7446 3.01 0.0027 * 
22035 0.7275 0.8518 0.85 0.3933   
22324 1.0332 0.637 1.62 0.1052   
22575 1.04 0.364 2.86 0.0044 * 
22584 1.0392 0.3121 3.33 0.0009 * 
22587 1.7566 0.2899 6.06 0.0000 * 
22594 1.8038 0.3977 4.54 0.0000 * 
22625 0.1396 0.6641 0.21 0.8336   
22635 2.0973 0.8609 2.44 0.0150 * 
22915 1.5607 0.4915 3.18 0.0015 * 
22934 1.6176 0.821 1.97 0.0491 * 
22935 1.3317 0.8253 1.61 0.1070   
23201 1.1539 0.3896 2.96 0.0031 * 
23474 2.0420 0.3994 5.11 0.0000 * 
24103 -0.058 0.3609 -0.16 0.8723   
24113 0.4957 0.455 1.09 0.2763   
24414 1.4844 0.4936 3.01 0.0027 * 
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NOAA   Value  Statistically 
GRID Trend Standard t Probability Significant 

ID Estimate Error Statistic t-Stat p<.05 
24687 0.0353 0.3011 0.12 0.9068   
24711 0.467 0.4455 1.05 0.2949   
25037 1.1449 0.7695 1.49 0.1371   
25270 1.9066 0.3269 5.83 0.0000 * 
25301 1.1044 0.3613 3.06 0.0023 * 
25593 5.4909 0.3688 14.89 0.0000 * 
25874 0.9399 0.5409 1.74 0.0826   
25879 1.9843 0.2524 7.86 0.0000 * 
26177 1.5708 0.3447 4.56 0.0000 * 
26178 1.6778 0.3382 4.96 0.0000 * 
26224 2.9097 0.5784 5.03 0.0000 * 
26816 0.9557 0.4876 1.96 0.0503   
26817 0.5159 0.4801 1.07 0.2829   
27125 1.2333 0.5453 2.26 0.0240 * 
27394 2.1212 0.3804 5.58 0.0000 * 
27436 0.8047 0.625 1.29 0.1983   
27974 2.7835 0.4128 6.74 0.0000 * 
27996 0.8098 0.4008 2.02 0.0437 * 
28280 4.8567 0.4718 10.29 0.0000 * 
28307 1.689 0.4421 3.82 0.0001 * 
28314 0.2698 0.4390 0.61 0.5391   
28566 0.5178 0.4398 1.18 0.2394   
28576 1.892 0.4473 4.23 0.0000 * 
28580 5.6791 0.5733 9.91 0.0000 * 
28591 3.4719 0.3426 10.13 0.0000 * 
28888 0.7547 0.2415 3.12 0.0018 * 
29176 -0.7248 0.8002 -0.91 0.3653   
29193 0.9221 0.4603 2 0.0455 * 
29218 1.5464 0.4564 3.39 0.0007 * 
29465 0.713 0.3514 2.03 0.0428 * 
29467 5.1334 0.3331 15.41 0.0000 * 
29472 1.1218 0.4454 2.52 0.0120 * 
29813 1.0682 0.4462 2.39 0.0169 * 
29816 1.3033 0.4824 2.7 0.0070 * 
30066 1.5755 0.5797 2.72 0.0067 * 
30667 0.1329 0.336 0.4 0.6926   
30674 2.8203 0.3967 7.11 0.0000 * 
30708 0.8404 0.41 2.05 0.0407 * 
30723 1.8726 0.4875 3.84 0.0001 * 
30965 -0.4044 0.4456 -0.91 0.3644   
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NOAA   Value  Statistically 
GRID Trend Standard t Probability Significant 

ID Estimate Error Statistic t-Stat p<.05 
30983 0.8276 0.3975 2.08 0.0376 * 
30995 0.9872 0.4239 2.33 0.0201 * 
30996 1.0447 0.4264 2.45 0.0145 * 
30999 1.3399 0.4289 3.12 0.0018 * 
31003 1.4633 0.4189 3.49 0.0005 * 
31005 1.4032 0.411 3.41 0.0007 * 
31013 0.3181 0.4161 0.76 0.4448   
31270 0.4681 0.3511 1.33 0.1828   
31309 -0.0761 0.4501 -0.17 0.8658   
31565 0.6407 0.4653 1.38 0.1689   
31566 4.5922 0.4251 10.8 0.0000 * 
31572 3.72 0.372 10 0.0000 * 
31588 1.4953 0.3830 3.90 0.0001 * 
31595 1.0195 0.4037 2.53 0.0117 * 
31624 1.5624 0.4773 3.27 0.0011 * 
31625 1.634 0.5092 3.21 0.0014 * 
31640 -1.0246 0.6027 -1.70 0.0895   
31886 1.4889 0.3878 3.84 0.0001 * 
31917 1.2838 0.4754 2.7 0.0071 * 
31933 1.98 0.5133 3.86 0.0001 * 
32220 1.5336 0.4903 3.13 0.0018 * 
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Table 4-2. Chow Tests of Structural Breaks in Precipitation Trends and Cycles 

NOAA Value   Statistically NOAA Value   Statistically 
GRID t Probability Significant GRID t Probability Significant 

ID Statistic F-Stat p<.05 ID Statistic F-Stat p<.05 
18129 0.96 0.4260   26816 0.69 0.5978   
18415 0.72 0.5751   26817 0.69 0.6016   
18695 1.78 0.1306   27125 0.54 0.7064   
18714 2.39 0.0493 * 27394 5.15 0.0004 * 
18990 1.77 0.1327   27436 0.32 0.8624   
19013 1.33 0.2587   27974 3.93 0.0036 * 
19014 1.31 0.2639   27996 1.71 0.1465   
19021 0.92 0.4514   28280 9.30 0.0000 * 
19033 1.05 0.3781   28307 0.45 0.7707   
19284 0.28 0.8938   28314 0.44 0.7769   
19317 0.71 0.5827   28566 5.77 0.0001 * 
19335 1.31 0.2652   28576 3.51 0.0075 * 
19336 0.87 0.4794   28580 11.51 0.0000 * 
19922 1.17 0.3209   28591 1.84 0.1188   
19926 0.37 0.8314   28888 0.33 0.8545   
19939 0.69 0.5991   29176 17.55 0.0000 * 
20218 0.45 0.7709   29193 0.90 0.4662   
20234 1.40 0.2310   29218 1.46 0.2136   
20786 3.69 0.0055 * 29465 9.33 0.0000 * 
20803 5.15 0.0004 * 29467 18.20 0.0000 * 
21109 6.04 0.0000 * 29472 0.34 0.8509   
21119 0.24 0.9170   29813 0.26 0.9021   
22029 0.58 0.6794   29816 1.16 0.3290   
22035 0.48 0.7483   30066 17.60 0.0000 * 
22324 0.12 0.9761   30667 3.25 0.0118 * 
22575 4.27 0.0020 * 30674 8.07 0.0000 * 
22584 0.95 0.4370   30708 1.46 0.2139   
22587 1.19 0.3156   30723 2.62 0.0338 * 
22594 2.09 0.0799   30965 1.03 0.3885   
22625 0.10 0.9814   30983 0.74 0.5671   
22635 0.71 0.5872   30995 1.61 0.1701   
22915 0.49 0.7440   30996 1.54 0.1878   
22934 0.22 0.9273   30999 1.35 0.2491   
22935 0.24 0.9140   31003 1.11 0.3483   
23201 2.64 0.0327 * 31005 0.53 0.7124   
23474 8.56 0.0000 * 31013 0.54 0.7040   
24103 0.81 0.5215   31270 4.02 0.0031 * 
24113 0.80 0.5263   31309 1.56 0.1823   
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NOAA Value   Statistically NOAA Value   Statistically 
GRID t Probability Significant GRID t Probability Significant 

ID Statistic F-Stat p<.05 ID Statistic F-Stat p<.05 
24414 0.53 0.7131   31565 18.67 0.0000 * 
24687 7.78 0.0000 * 31566 8.30 0.0000 * 
24711 0.64 0.6353   31572 7.29 0.0000 * 
25037 0.91 0.4547   31588 1.19 0.3149   
25270 2.76 0.0266 * 31595 0.62 0.6489   
25301 1.14 0.3341   31624 1.64 0.1615   
25593 13.44 0.0000 * 31625 1.61 0.1697   
25874 6.47 0.0000 * 31640 2.82 0.0242 * 
25879 2.10 0.0786   31886 0.75 0.5574   
26177 4.23 0.0021 * 31917 0.85 0.4949   
26178 1.93 0.1026   31933 0.71 0.5870   
26224 1.48 0.2058   32220 2.04 0.0865   

 

 
 

 

Figure 4-1 
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Comparison of NCDC and CPC NOAA Data 

 

Figure 4-2 

Comparison of PRISM and CPC NOAA Data  
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Figure 4-3 

Comparison of PRISM and NCDC NOAA Data  
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Figure 4-4

Comparison of NEXRAD and PRISM Precipitation Measures from Gao 

et al. (2017) 
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Figure 4-5 

Comparison of NCDC and CPC NOAA Data at County Level 
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Figure 4-6 

Comparison of NCDC and CPC NOAA Data at State Level 

  



72 
 

 

Figure 4-7 

Estimated Trend and Seasonality for ID 19014 
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Figure 4-8 

Estimated Trend and Seasonality for ID 19033 
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Figure 4-9 

Estimated Trend and Seasonality for ID 19335 
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Rating Review 
 

The current procedure used in rating the PRF product utilizes a nonparametric empirical burn 
rate and parametric distributions derived from the log-normal and the truncated normal.  
Because there are currently only 70 years of rainfall data available (in the CPC data currently 
used by RMA), the use of an empirical burn rate might be questionable.  One would typically 
hope to have a longer range of data if departing from any specific parametric distribution in 
rating coverage.  The fact that RMA’s process includes a comparison of the burn rates to 
rates taken from the lognormal, truncated normal, and a Gram Charlier (GC) expansion 
distribution in order to bound the final rate serves to mitigate this concern.  One would 
expect that parametric distributions would tend to smooth rates and result in slightly higher 
rates in high-risk cases.  An alternative approach could consider smoothing rates and adding 
a modest amount of structure by applying nonparametric kernel density estimation methods.   
  
The specific bounding undertaken by RMA is the rating process involves the following steps.   
1. Calculate the burn rate and rates implied by the BS/lognormal, GC, and truncated 

normal.9 
2. If the burn rate is less than the maximum of the truncated normal, the BS/log-normal, 

and the GC rates, the raw rate is set to the lowest of the three different parametric rates. 
3. If the burn rate is higher than the maximum of the three parametric rates, the raw rate is 

set to the maximum of the parametric rates.   
4. If the burn rate is between the minimum and maximum of the parametric rates, the raw 

rate is set to the burn rate.   
5. The raw rate is then loaded by dividing by 0.88. 

 
After a final raw rate is derived, a spatial smoothing algorithm that takes a weighted average 
of the raw rate and surrounding raw rates is used to determine a final rate.  It should be noted 
that this weighting scheme is reasonable though it is of an ad hoc nature.  One could combine 
the neighboring grids before estimating a final raw rate, though there is no reason to prefer 
such over the present method.  The spatial smoothing practice is entirely reasonable and we 
do not recommend any changes to current smoothing practices.  However, it may be relevant 
to consider how rates might differ if the pooling was done before the specific rates were 
calculated.   
 
The bounding of rates through a comparison of the burn rate with the three parametric 
alternatives is a sensible approach.  However, it is ad hoc and lacks any real justification.  An 
alternative that may have merit would be to use specific criteria that reflect the goodness of 

 
9 The developers use a Black Scholes (BS) option pricing model formula to calculate a distribution analogous to a 
lognormal.  As we note below, we believe an error exists in the coding of the BS estimates.  The developers also 
use a Gramm Chatalier.   
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fit of the parametric alternatives as a means of selecting a final parametric rate.  We discuss 
the application of such an approach next.   
 
We broadened the consideration of parametric distributions to include the Weibull, Normal, 
Inverse Gaussian (Wald), and the Gamma distributions.  We calculated various measures of 
standard goodness of fit tests of each of these distributions.  Specifically, we considered the 
Anderson-Darling, Cramer von Mises, and Kolmogorov distributional tests.  Not every test is 
available for every distribution considered, though each candidate is tested using at least two 
goodness of fit tests.   

 
We considered the following alternative distributions: 

𝑃𝑃𝑃𝑃𝑃𝑃(′𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊′, 𝑥𝑥,𝑎𝑎, 𝜆𝜆) = {
0 𝑥𝑥 < 0

𝑒𝑒𝑥𝑥𝑒𝑒(−(
𝑥𝑥
𝜆𝜆

)𝑎𝑎)
𝑎𝑎
𝜆𝜆

(
𝑥𝑥
𝜆𝜆

)𝑎𝑎−1 𝑥𝑥 ≥ 0 

𝑃𝑃𝑃𝑃𝑃𝑃(′𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺′, 𝑥𝑥,𝑎𝑎, 𝜆𝜆) = {
0 𝑥𝑥 < 0

1
𝜆𝜆𝑎𝑎𝛤𝛤(𝑎𝑎)

𝑥𝑥𝑎𝑎−1𝑒𝑒𝑥𝑥𝑒𝑒(−
𝑥𝑥
𝜆𝜆

) 𝑥𝑥 ≥ 0 

𝑃𝑃𝑃𝑃𝑃𝑃(′𝑊𝑊𝐼𝐼𝐼𝐼𝑊𝑊𝐼𝐼𝐼𝐼𝑊𝑊 𝐺𝐺𝐺𝐺𝑊𝑊𝐼𝐼𝐼𝐼𝑊𝑊𝐺𝐺𝐼𝐼) =  [
𝜆𝜆

2𝜋𝜋𝑥𝑥3
]1 2⁄ exp {−

𝜆𝜆
2𝜇𝜇2𝑥𝑥

(𝑥𝑥 − 𝜇𝜇)2},         𝑥𝑥 > 0 

𝑃𝑃𝑃𝑃𝑃𝑃(′𝑊𝑊𝐿𝐿𝐺𝐺𝐼𝐼′, 𝑥𝑥,𝜃𝜃, 𝜆𝜆) = {
0 𝑥𝑥 ≤ 0

1

𝑥𝑥𝑥𝑥 √2𝜋𝜋
𝑒𝑒𝑥𝑥𝑒𝑒(− (𝑙𝑙𝑙𝑙𝑙𝑙(𝑥𝑥)−𝜃𝜃)2

2𝑥𝑥2
) 𝑥𝑥 > 0. 

A selection of 8 randomly chosen grids and intervals is presented in Figures 4-10 to 4-12.  
The range of densities illustrates that the density is quite similar, except for the normal 
density.  The densities that admit a greater degree of negative skewness will tend to generate 
higher rates.  This is illustrated by the shape of the distribution, with the mode falling closer 
to zero than is the case for other distributions.  The highest rates would be expected to be 
observed for the inverse Gaussian distribution---a result that is confirmed below.  The top 
diagram in Figure 4-12 illustrates the problems associated with fitting the parameter 
distribution to counties that typically have very dry climates.   

 
The tests were calculated for every grid code and interval combination (149,866 cases). The 
tests provide strong support for the truncated normal distribution, which is rejected at the 5 
percent level only in 3-10 percent of the cases.  However, a similar degree of fit is offered by 
the Gamma distribution, which is rejected in only about 8-10 percent of the cases.  Rather 
than using an ad hoc procedure to select the distribution for parametric rates, we recommend 
that RMA consider using an alternative approach that can be justified on statistical grounds.  
The goodness of fit tests could be compared to one another to select the best fitting 
distribution.  Table 4-3 presents a summary of the test results for all grids and intervals.  
Table 4-4 reports results by interval and distribution.   
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Table 4-3 

Goodness of Fit Tests Calculated from All Grid Codes and Intervals 

      Proportion Rejected 
Distribution Test N 10% 5% 1% 

Gamma Anderson-Darling          142,165  0.1666 0.1000 0.0322 
Gamma Cramer-von Mises          142,165  0.1579 0.0929 0.0280 
Gamma Kolmogorov-Smirnov          142,165  0.1478 0.0834 0.0228 
Inverse Gaussian Anderson-Darling          149,875  0.6353 0.5643 0.4168 
Inverse Gaussian Cramer-von Mises          149,875  0.6264 0.5432 0.4123 
Inverse Gaussian Kolmogorov-Smirnov          149,875  0.5850 0.5010 0.3459 
Lognormal Anderson-Darling          149,875  0.5401 0.4521 0.3080 
Lognormal Cramer-von Mises          149,875  0.5048 0.4180 0.2750 
Lognormal Kolmogorov-Smirnov          149,875  0.4575 0.3568 0.0000 
Normal Anderson-Darling          149,875  0.7214 0.6361 0.4651 
Normal Cramer-von Mises          149,875  0.6738 0.5835 0.4117 
Normal Kolmogorov-Smirnov          149,875  0.6055 0.4925 0.0000 
Truncated Normal Cramer-von-Mises          149,886  0.1826 0.1084 0.0427 
Truncated Normal Kolmogorov-Smirnov          149,886  0.0369 0.0304 0.0272 
Weibull Anderson-Darling          149,875  0.3357 0.2479 0.0000 
Weibull Cramer-von Mises          149,875  0.3063 0.2163 0.0000 
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Table 4-4 

Goodness of Fit Results by Interval and Distribution 

      Proportion Rejected 
Interval Distribution N 10% 5% 1% 

625 Gamma          39,501  0.1686 0.1014 0.0327 
625 InverseGaussian          40,875  0.6067 0.5232 0.3796 
625 Lognormal          40,875  0.4878 0.4007 0.1885 
625 Normal          40,875  0.7025 0.6153 0.3350 
625 Truncated_Normal          27,252  0.1088 0.0620 0.0182 
625 Weibull          27,250  0.3207 0.2352 0.0000 
626 Gamma          39,348  0.1797 0.1089 0.0367 
626 InverseGaussian          40,875  0.6025 0.5172 0.3621 
626 Lognormal          40,875  0.4885 0.3897 0.1773 
626 Normal          40,875  0.6803 0.5866 0.3091 
626 Truncated_Normal          27,252  0.1168 0.0724 0.0265 
626 Weibull          27,250  0.3507 0.2659 0.0000 
627 Gamma          39,075  0.1424 0.0801 0.0225 
627 InverseGaussian          40,875  0.5439 0.4607 0.3213 
627 Lognormal          40,875  0.4380 0.3477 0.1580 
627 Normal          40,875  0.6589 0.5670 0.2870 
627 Truncated_Normal          27,252  0.1025 0.0611 0.0242 
627 Weibull          27,250  0.3388 0.2462 0.0000 
628 Gamma          38,916  0.1285 0.0686 0.0163 
628 InverseGaussian          40,875  0.5051 0.4248 0.2889 
628 Lognormal          40,875  0.4097 0.3226 0.1444 
628 Normal          40,875  0.6537 0.5502 0.2734 
628 Truncated_Normal          27,252  0.1188 0.0737 0.0349 
628 Weibull          27,250  0.3657 0.2665 0.0000 
629 Gamma          37,875  0.1269 0.0706 0.0198 
629 InverseGaussian          40,875  0.5330 0.4451 0.3045 
629 Lognormal          40,875  0.4335 0.3402 0.1525 
629 Normal          40,875  0.6064 0.5085 0.2514 
629 Truncated_Normal          27,252  0.1293 0.0897 0.0556 
629 Weibull          27,250  0.3388 0.2406 0.0000 
630 Gamma          38,946  0.1440 0.0825 0.0230 
630 InverseGaussian          40,875  0.5707 0.4851 0.3289 
630 Lognormal          40,875  0.4658 0.3700 0.1634 
630 Normal          40,875  0.6024 0.4980 0.2363 
630 Truncated_Normal          27,252  0.1091 0.0712 0.0430 
630 Weibull          27,250  0.3444 0.2515 0.0000 
631 Gamma          38,178  0.1395 0.0771 0.0199 
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      Proportion Rejected 
Interval Distribution N 10% 5% 1% 

631 InverseGaussian          40,875  0.5816 0.4977 0.3502 
631 Lognormal          40,875  0.4742 0.3794 0.1744 
631 Normal          40,875  0.5983 0.4996 0.2467 
631 Truncated_Normal          27,252  0.1196 0.0838 0.0549 
631 Weibull          27,250  0.3300 0.2397 0.0000 
632 Gamma          38,535  0.1548 0.0873 0.0227 
632 InverseGaussian          40,875  0.6297 0.5492 0.4035 
632 Lognormal          40,875  0.5169 0.4205 0.2004 
632 Normal          40,875  0.6777 0.5804 0.2967 
632 Truncated_Normal          27,252  0.1358 0.0918 0.0514 
632 Weibull          27,250  0.3315 0.2472 0.0000 
633 Gamma          38,919  0.1968 0.1211 0.0393 
633 InverseGaussian          40,875  0.7822 0.7184 0.5705 
633 Lognormal          40,875  0.6443 0.5545 0.2843 
633 Normal          40,875  0.6862 0.5829 0.2929 
633 Truncated_Normal          27,252  0.0873 0.0542 0.0286 
633 Weibull          27,250  0.2284 0.1522 0.0000 
634 Gamma          39,150  0.1747 0.1049 0.0342 
634 InverseGaussian          40,875  0.7071 0.6401 0.5022 
634 Lognormal          40,875  0.5763 0.4841 0.2446 
634 Normal          40,875  0.7342 0.6428 0.3380 
634 Truncated_Normal          27,252  0.0819 0.0461 0.0208 
634 Weibull          27,250  0.2680 0.1793 0.0000 
635 Gamma          38,052  0.1743 0.1097 0.0371 
635 InverseGaussian          40,875  0.7087 0.6364 0.4967 
635 Lognormal          40,875  0.5739 0.4893 0.2498 
635 Normal          40,875  0.7355 0.6467 0.3481 
635 Truncated_Normal          27,252  0.0976 0.0574 0.0264 
635 Weibull          27,250  0.3141 0.2287 0.0000 
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We utilized standard maximum likelihood estimation techniques to estimate the truncated 
normal distribution for each grid code and interval combination.  An important limitation of 
this approach merits discussion here.  The truncated normal distribution can prove difficult to 
estimate by standard nonlinear estimation procedures when the variance of the relevant data 
is very large or when data are concentrated at levels close to the truncation point (zero in our 
case).  Both conditions characterize very dry and high-risk grid locations.  We were unable to 
estimate parameters to maximize the likelihood function for the truncated normal distribution 
in a few cases.  Such grids typically have a very negative mean/scale parameter, which also 
leads to difficulties in rate estimation.  We utilized rejection/acceptance sampling (one-
million replications) and in the cases of a very large in magnitude negative mean parameter, 
it is difficult to use rejection sampling methods because the relevant portion of the normal 
distribution that lies above the truncation point (zero) is very small.  The lognormal 
distribution encounters similar problems in cases where a grid/interval has very low recorded 
rainfall and very high variance.  In such a case, the distribution has an extreme mode close to 
zero and a very long right tail, reflecting the positive skew of the lognormal.   

 
We also believe that there is an error in the formula used to derive the BS/lognormal rates in 
the RMA rating program.  The rating program uses the following coding 

 
std(log(index+0.0001)) as vol… 
d1=( log(1/coveragelevelpercent)+(vol**2)/2)/vol; 

 d2=d1-vol; 
 N_d1=cdf(“normal”,-d1,0,1); 
 N_d2=cdf(“normal”,-d2,0,1); 

 BS = N_d2 – N_d1/coveragelevelpercent;  * black scholes rate ; 
 

We have examined the formula carefully and do not believe the calculation is correct given 
the log-normal distribution assumption.  Empirically, we compared the original (incorrect) 
formula from the developer and the BS rates calculated using a corrected formula.   
 
BS formulas for a put option: 

𝑒𝑒 = 𝐾𝐾𝑒𝑒−𝑟𝑟𝑟𝑟𝐼𝐼(−𝑑𝑑2) − 𝐼𝐼0𝐼𝐼(−𝑑𝑑1)            (1) 

 

𝑑𝑑1 =
ln (𝐼𝐼0/𝐾𝐾) + (𝑟𝑟 + 𝜎𝜎2/2)𝑇𝑇

𝜎𝜎√𝑇𝑇
          (2) 

𝑑𝑑2 = 𝑑𝑑1 − 𝜎𝜎√𝑇𝑇             (3). 

Application to PRF index 
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Assumptions: 

A1: K=c, where c=coverage level; 

A2: r=0, the risk-free interest rate is zero, so no discounting; 

A3: T=1; 

A4: S0=1, the initial price for the index equals 1. 

With assumptions A1-A4, the formulas for the PRF index become 

𝑒𝑒 = 𝑐𝑐 𝐼𝐼(−𝑑𝑑2) − 𝐼𝐼(−𝑑𝑑1)          (4) 

 

𝑑𝑑1 =
ln (1/𝑐𝑐) + (𝜎𝜎2/2)

𝜎𝜎
          (5) 

𝑑𝑑2 = 𝑑𝑑1 − 𝜎𝜎             (6) 

where σ is the standard deviation of the ln(index). 

The equivalent of (4) used by the developer to calculate the BS rate is: 

𝑒𝑒 =
1
𝑐𝑐
�𝑐𝑐 𝐼𝐼(−𝑑𝑑2) − 𝐼𝐼(−𝑑𝑑1)�         (7). 

We believe the multiplication by 1/c in (7) is incorrect. 

 
The comparison is based on the average BS rates for 2019 and all grids.  The BS rates 
calculated using the corrected formula tend to be lower than the BS rates calculated using the 
original formula.  The average difference between the two rates is from a high of 4.2 
percentage points for the 70% coverage level to a low of 2.1 percentage points for the 90% 
coverage level.  Also, the corrected BS rates are very similar to the BR rates 
 
As a further analysis, we randomly chose 500 grid codes from the collection of 13,626 total 
from the focus area illustrated in Figure 4-10.  We calculated premium rates for coverage 
levels between 70-100 percent using each of the alternative distributions and the truncated 
normal.  A summary of the average values of the shape and scale parameters is presented in 
Table 4-5.  
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Table 4-5 

Average Values of ML Parameter Estimates 

          Standard 
Distribution Threshold Scale Shape Mean Deviation 

Gamma 0.0000 0.3208 3.9286 1.0000 0.5492 
Inverse Gaussian 1.0000 --- 2.8412 1.0000 1.0155 
Lognormal 0.0000 -0.1711 0.6283 1.0646 1.1474 
Normal --- --- --- 1.0000 0.5333 
Truncated Normal --- 0.6051 0.6771 --- --- 
Weibull 0.0000 1.1205 2.0979 1.0011 0.5297 

 

We utilized one-million replicates in a rejection sampling framework to determine rates 
based on each parametric distribution.10  Table 4-6 presents average rates across the entire 
sample of 500 grid codes (with 11 intervals each).  Table 4-6 also includes RMA raw rates 
for the truncated normal (RMA’s version and the developer’s approximation).  The results 
demonstrate that there is relative homogeneity among the alternative parametric and burn 
rates, at least at an aggregate level.  The lognormal tends to generate rates that are 
considerably smaller than the BS rates.  The inverse Gaussian distribution tends to produce 
the highest average rates.   
 

Average Values of Rates Across Selected 500 Grid Codes 

Table 4-6 

    Coverage Level 
Distribution N 70% 75.00% 80.00% 85.00% 90.00% 100% 

Black_Scholes 5500 0.1319 0.1500 0.1686 0.1875 0.2066 --- 
Burn_Rate 5500 0.1082 0.1234 0.1393 0.1558 0.1729 --- 
Dev_Truncated_Normal 5500 0.1247 0.1361 0.1480 0.1609 0.1743 --- 
Gamma 5500 0.1102 0.1260 0.1424 0.1595 0.1769 0.2127 
Gram Charlier 5500 0.1151 0.1279 0.1411 0.1556 0.1707 --- 
Inverse Gaussian 5500 0.1547 0.1728 0.1913 0.2099 0.2286 0.2657 
Lognormal 5500 0.1191 0.1366 0.1547 0.1731 0.1917 0.2291 
Normal 5500 0.1387 0.1491 0.1603 0.1724 0.1852 0.2127 
RMA_Truncated_Normal 5500 0.1248 0.1362 0.1482 0.1610 0.1744 --- 
Truncated Normal 5387 0.1251 0.1382 0.1518 0.1660 0.1807 0.2113 

 
10 For a discussion of rejection sampling, see P. W. Laud, P. Damien, and T. S. Shively, (2010) “Sampling Some 
Truncated Distributions Via Rejection Algorithms.” Communications in Statistics - Simulation and Computation, 
Pages 1111-1121; and Marsaglia, George (1964). "Generating a variable from the tail of the normal distribution". 
Technometrics. 6 (1): 101–102. 
 



83 
 

Weibull 5500 0.1169 0.1314 0.1464 0.1619 0.1778 0.2106 
 

 
 
We compared our rejection-based simulated rates to the two alternatives of the truncated 
normal embedded in the RMA rating program.  As noted, we found the truncated normal to 
be unstable and difficult to fit by maximum likelihood methods in cases of high risk and long 
right tails.  Such cases typically generated a mean value for the truncated normal that is very 
negative.  This makes the effective coverage of the density to the right of the truncation point 
(zero) very small relative to the overall normal.  Our rejection method rate estimates were 
compared to those generated by the RMA rating procedures.  Table 4-7 below presents 
average values across the two alternative methods of rating with the truncated normal 
distribution.  The rates are very close on average and the average differences are very close 
to zero.  However, a consideration of differences across different levels of coverage does 
reveal modest differences at very high rates—a finding that likely reflects the substantial 
difficulties associated with fitting the truncated normal in very high-risk cases (Table 4-8).   

 

Comparison of Alternative Truncated Normal Rates 

Table 4-7 

  RMA Rejection Method Mean 
Coverage Level Truncated Normal Truncated Normal Difference 

70% 0.1227 0.1251 -0.0024 
75% 0.1340 0.1382 -0.0041 
80% 0.1462 0.1518 -0.0057 
85% 0.1590 0.1660 -0.0070 
90% 0.1725 0.1807 -0.0082 

100% --- 0.2113 --- 
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Table 4-8 

Truncated Normal Claim and Conditional Expected Indemnities 

(Risk and Exposure) 

  Probability of a Claim Expected Indemnity Conditional on a Claim 
Distribution 70% 75.00% 80.00% 85.00% 90.00% 100% 70% 75.00% 80.00% 85.00% 90.00% 100% 

Gamma 0.3258 0.3682 0.4108 0.4530 0.4944 0.5730 0.2244 0.2461 0.2688 0.2924 0.3169 0.3688 
Inverse Gaussian 0.4047 0.4473 0.4885 0.5279 0.5652 0.6329 0.2330 0.2595 0.2870 0.3155 0.3449 0.4064 

Lognormal 0.3595 0.4038 0.4470 0.4887 0.5284 0.6010 0.2169 0.2412 0.2666 0.2930 0.3205 0.3785 
Normal 0.2784 0.3117 0.3469 0.3837 0.4218 0.5000 0.3338 0.3469 0.3608 0.3756 0.3912 0.4255 

Truncated Normal 0.3041 0.3386 0.3744 0.4113 0.4489 0.5250 0.2777 0.2967 0.3161 0.3360 0.3565 0.3996 
Weibull 0.3151 0.3525 0.3906 0.4292 0.4677 0.5438 0.2504 0.2711 0.2923 0.3142 0.3368 0.3842 
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Figure 4-10 shows the area of the U.S. where we conduct a more intensive comparison of rates. 
Using this sample of grids, figures 4-11 through 4-13 are examples of the distributions fit using 
alternative fitted distributions.  Figure 4-14 shows a histogram for a representative period that 
reflects the relatively small range of rainfall values often fit.  

 

 

Figure 4-10 

Area of Focused Analysis of Premium Rates 
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Figure 4-11 

Examples of Fitted Densities 
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Figure 4-12 

Examples of Fitted Densities 
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Figure 4-13 

Examples of Fitted Densities 
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Figure 4-14 

Histogram of data from Grid 18083 and Interval 629. 

 

Figures 4-15 and 4-16 present rates derived from the truncated normal using the two 
alternative rating methods (our ML versions and those generated by the RMA rating 
program).  The alternative rating methods track very closely at low to moderately high levels.  
However, a small but notable difference arises at higher rates, with our ML rejection 
sampling methods generating slightly higher rates.  The differences are more notable at the 
higher 90 percent coverage level. The criteria for choosing one method over another are 
unclear and the underlying reasons for the differences are likewise uncertain.  As noted, this 
likely reflects the difficulties associated with working with a truncated normal distribution 
when the scale (mean) parameter is very negative (i.e., in high-risk situations).   
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Figure 4-15 

Seventy Percent Rate Comparison Rejection Method and RMA Truncated Normal 

 

Figure 4-16 

Ninety Percent Rate Comparison Rejection Method and RMA Truncated Normal 
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Actuarial Recommendations 
 

Overall, this program is actuarially sound.  Outside of a computation error in fitting the 
Black Scholes parameters, we find no significant shortcomings in the general approach used 
by RMA to estimate premium rates.  Methods currently used to bound rates and to select the 
final rates from among the different rate estimates are ad hoc.  We recommend that RMA 
consider the use of goodness-of-fit tests in the selection of the final parametric distribution 
used to estimate rates.  Of course, rates derived from parametric distributions should be 
compared to empirical burn rates.  In some cases with extremely high or low variance, 
convergence issues may make it difficult to adequately estimate parametric rates and thus 
any measure based on such rates needs a careful review.  The truncated normal distribution 
is strongly supported in a majority of cases.  Procedures currently used to spatially smooth 
rates are appropriate and we recommend no changes to these procedures. 
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Chapter 5 Evaluate the current program design  
 

Assessment of the frequency of payments 
 

The assessment of the frequency of payments is conducted using the rainfall index data at the 
national level, including all grids.  The assessment is performed for the period 2002-2018. 
There are eleven two-month intervals, J-F, F-M, M-A, A-M, M-J, J-J, J-A, A-S, S-O, O-N, 
and N-D.  Producers can select up to six non-overlapping intervals.  When producers select 
more than one interval, there are at least two different ways to calculate payment frequencies.  
The first way would be to calculate payment frequencies at the “producer level”.  As an 
example, consider a producer who chooses five intervals.  If at least one of the five intervals 
results in a payment, then the frequency of payment for this producer would be: 1/1 or 100 
percent.  A second way to calculate payment frequencies would be at the “interval level”.  
Given that each interval is rated and indemnified independently of the other intervals when 
the producer chooses multiple intervals the producer is choosing different policies.  
Alternatively, when the producer chooses multiple intervals one can think as if the producer 
is choosing a single policy with multiple payments.  For the example where the producer 
chooses five intervals, if one of the five intervals results in payment, then the frequency of 
payment for this producer would be 1/5 or 20 percent.   
 
Figure 5-1 shows the payment frequencies by interval and coverage level for the period 
2002-2018.  Note that payment frequencies are very similar across the eleven intervals with 
only two intervals, J-F and F-M, where payment frequencies are slightly higher than the other 
intervals. 
 
Figure 5-2 shows the payment frequencies by coverage level for the period 2002-2018.  
Payment frequencies increase with the coverage level. 
 
Figures 5-3 and 5-4 show the payment frequencies for two combinations of the eleven 
intervals.  The first combination consists of six non-overlapping two-month intervals, J-F, M-
A, M-J, J-A, S-O, and N-D.  This combination is referred to as "ODD" (the first month of 
each interval is odd).  The second combination consists of five non-overlapping two-month 
intervals, F-M, A-M, J-J, A-S, and O-N referred to as "EVEN". 
 
Figure 5-3 shows the payment frequencies calculated at the “producer level”.  Note that if at 
least one of the intervals in the combination results in a payment then the entire combination 
of five or six intervals also results in payment, and the frequency of payment for this 
producer would be 1/1 or 100 percent. 
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Figure 5-4 shows the payment frequencies calculated at the “interval level”.  The frequency 
of payment for each combination is calculated by dividing the number of intervals in the 
combination that result in a payment by the total number of intervals in the combination. 
 
Payment frequency was also assessed for three-month intervals.  The three-month intervals 
considered were J-F-M, F-M-A, M-A-M, A-M-J, M-J-J, J-J-A, J-A-S, A-S-O, S-O-N, and O-
N-D. 
 
Figure 5-5 shows the payment frequencies by three-month intervals and coverage level for 
the period 2002-2018.  Note that payment frequencies for the two early in the year intervals 
J-F-M and F-M-A are again slightly higher than the other intervals. 
 
Figure 5-6 shows the payment frequencies for three combinations of the ten 3-month 
intervals.  The first combination consists of four non-overlapping three-month intervals, J-F-
M, A-M-J, J-A-S, and O-N-D.  This combination is referred to as "1st 3-Month".  The second 
combination consists of three non-overlapping three-month intervals, F-M-A, M-J-J, and A-
S-O and is referred to as "2nd 3-Month".  The third combination consists of three non-
overlapping three-month intervals, M-A-M, J-J-A, and S-O-N and is referred to as "3rd 3-
Month ".  Figure 5-6 shows the payment frequencies calculated at the “producer level”.  Note 
again that if at least one of the intervals in the combination results in a payment then the 
entire combination of five or six intervals also results in payment, and the frequency of 
payment for this producer would be: 1/1 or 100 percent. 
 
Results of Figure 5-6 show that payment frequencies for the combination "1st 3-Month" are 
much higher than the payment frequencies for the other two combinations, "2nd 3-Month" 
and "3rd 3-Month".  For example, for coverage level, 90 percent payment frequency for the 
"1st 3-Month" combination is 10 percentage points higher than payment frequency for the 
other two combinations.  For coverage level, 70 percent the difference is about 13 percentage 
points.  Note that combinations "2nd 3-Month" and "3rd 3-Month" do not include the months 
of January and December. 
 
Figure 5-7 shows the payment frequencies for the three-month intervals by coverage level for 
the period 2002-2018.  Payment frequencies increase with the coverage level. 
 
A comparison of Figures 5-1 and 5-5 indicates a tendency for the lower frequency of 
payments for the three-month intervals compared to the two-month intervals.  A more direct 
comparison of the frequency of payments between the two- and three-month intervals is 
provided by comparing Figures 5-2 and 5-7.  The frequency of payments for each coverage 
level for the three-month intervals, as shown in Figure 5-7, is lower than the respective 
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frequency of payments for the two-month intervals shown in Figure 5-2.  For example, the 
frequency of payments for the 90% coverage level is 42.5% for the three-month intervals 
versus 46.1% for the two-month intervals.  Similarly, the frequency of payments for the 85% 
coverage level is 37.6% for the three-month intervals versus 41.8% for the two-month 
intervals. 
 
A combination of lowering the highest coverage level and/or the replacement of the two-
month intervals with the three-month intervals would result in a lower frequency of small 
payments.  For example, using two-month intervals but lowering the highest coverage level 
from 90% to 80% would lower the highest frequency of payments from 46.1% to 37.6%.  
Alternatively, replacing the two-month intervals with the three-month intervals and keeping 
the highest coverage level the same at 90% would lower the highest frequency of payments 
from 46.1% to 42.5%.  As another alternative, a combination of lowering the highest 
coverage level from 90% to 85% and replacing the two-month intervals with the three-month 
intervals would lower the highest frequency of payments from 46.1% to 37.6%. 
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Figure 5.1. Payment Frequencies by Two-Month Interval and Coverage Level 2002-2018 

 

 

Figure 5.2. Payment Frequencies by Coverage Level for all Two-Month Intervals 2002-2018 
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Figure 5.3. Payment Frequencies by Combinations of Two-Month Intervals and Coverage Level 
2002-2018 (Frequencies are calculated at the “producer level” – see text for definition) 

 

 

 

Figure 5.4. Payment Frequencies by Combinations of Intervals and Coverage Level 2002-2018 
(Frequencies are calculated at the “interval level” – see text for definition) 
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Figure 5.5. Payment Frequencies by Three-Month Interval and Coverage Level 2002-2018 

 

 

Figure 5.6. Payment Frequencies by Combinations of Three-Month Intervals and Coverage 
Level 2002-2018 (Frequencies are calculated at the “producer level” – see text for definition) 
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Figure 5.7. Payment Frequencies by Coverage Level for all Three-Month Intervals 2002-2018 
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Intervals contributing to forage production 
 

Producers are given latitude to insure any period during the year.  Given that some regions 
may have a mix of cool and warm-season grasses, defining a set period for a growing season 
may be difficult.  Also, producers in arid regions may believe that pre-growing season 
rainfall is critical for growing season forage production.  However, the Agrilytica report 
(2014 P 3.) states “While many producers allocate insurance to intervals that have the 
highest production risk, some select the intervals they think will yield the highest potential 
pay-out (based on several criteria).  Others select all or several intervals to maximize the 
chances of an indemnity.  For these producers, the interval selection incentives conflict 
with RMA’s view of the risk management objectives of the plans.  In Texas, the uniform 
spreading of liability is not consistent with historical rainfall averages, which are much 
higher in summer months.” 
 
As noted in the literature review, Diersen et al. (2015) suggest that the most risk efficient 
intervals are May-June and July-August and these choices are most consistent with the desire 
to have payments that offset the highest expected forage risk. Similarly, Westerhold et al. 
(2018) also find that intervals that coincide with the actual growing season in Nebraska are 
the ones where PRF provides the largest risk reductions. They go on to suggest dropping 
intervals in the PRF contract that do not coincide with the growing season since these 
intervals tend to be used as an income maximizing strategy rather than risk reduction. 
 

 

Assessment of the relationship between hay yields and weather variables 
 

Data for this part of the analysis consists of alfalfa other (excluding alfalfa) hay yields 
(ton/acre) from NASS, precipitation (mm), temperature (degree C), and Palmer Drought 
Severity Index (PDSI) (generally between -2 and 2) data.  Data are observed annually at the 
state level.  As an alternative to state-level data, county-level data are used to distinguish 
between different parts within a state that use irrigated or non-irrigated practice. 

The dependent variable for this part of the analysis consists of alfalfa hay yield and other 
(excluding alfalfa) hay yield.  The discussion here is for the case of other (excluding alfalfa) 
hay yield.  Findings are similar for the case of the alfalfa hay yield.  The dependent variable 
(hay yield) was modeled as a function of two sets of independent variables.  The first set 
includes precipitation and temperature while the second set consists of PDSI.  A trend 
variable is also included in both sets.   

Several issues were investigated: 
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1. What is the effect of the monthly precipitation, temperature, and PDSI variables on hay 
yields? 

2. What is the effect of the neighboring states' aggregate precipitation, temperature, and 
PDSI variables on the hay prices of a target state? 

3. Is there a nonlinear (quadratic) relationship between precipitation, temperature, and PDSI 
and hay prices? 

The results for each of these issues are discussed below. 

1. What is the effect of the monthly precipitation, temperature, and PDSI variables on hay 
yields? 

Two sets of regressions were estimated to address the first issue.  First, hay yields were 
regressed against 12 monthly variables of precipitation and temperature.  Second, monthly 
variables of precipitation and temperature were aggregated into two 6-month periods, one 
before the growing season from previous October to March and the other during the growing 
season from April to September.  A trend variable was also added in both sets of regressions. 

The same analysis was repeated to investigate the relationship between hay yields and PDSI. 

Some general notation description for all the tables is provided here.  P indicates 
precipitation, T indicates temperature, and PDSI indicates the Palmer Drought Severity 
Index.  The numbers in parenthesis following P, T, and PDSI indicate lags, for example, P(3) 
indicates the value of precipitation lagged by three months.  The numbers without parenthesis 
following P, T, and PDSI indicate the calendar month, for example, P3 indicates the value of 
precipitation for March.  X^2 indicates the square term of the variable X while NB_X 
indicates the aggregate value from the neighboring states for the variable X. 

The results of the stepwise regression of the relationship between hay yields and precipitation 
and temperature are reported in Table 5.1 for the case of monthly variables and Table 5.2 for 
the case of the two 6-month periods, respectively.   The results of the relationship between 
hay yields and PDSI are reported in Table 5.3 and Table 5.4, respectively.   

Table 5.5 presents the extends the analysis to include the effect of precipitation and 
temperature variables from the neighboring states.  Table 5.6 presents similar results to table 
5.5 for PDSI variables. 

The results of Table 5.1 show that the maximum number of significant monthly variables for 
precipitation varies from zero to seven.  For temperature the number of significant monthly 
variables varies from zero to six.  Additionally, all monthly variables for both precipitation 
and temperature have a significant effect on hay yield for at least one state.  Results of Table 
5.1 also show that precipitation, temperature, and a trend variable explain from a low of 26% 
for the state of MI to a high of 97% for MT of the variation in hay yields.   

The results of Table 5.3 show that the maximum number of monthly variables for PDSI 
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varies from zero to four.  Additionally, all monthly variables for PDSI, except for March, 
have a significant effect on hay yield for at least one state.  Results of Table 5.3 show PDSI 
explains from a low of 0% for the states of IA, MI, and OH to a high of 84% for ND and CO 
of the variation in hay yields.   

Table 5.2 presents the results of the regression of the hay yield on monthly precipitation and 
temperature variables aggregated into a prior to – and during the growing season.  Table 5.4 
presents the results of the similar regression of the hay yield on the aggregated monthly PDSI 
variables.  Results of Table 5.2 show that while for a few states precipitation before the 
growing season has a significant effect on hay yield, for the majority of states (21 out of 29 
states), it is the precipitation during the growing season that significantly affects hay yield.  
This finding indicates that restricting interval selection to only during the growing season 
should not negatively affect the risk management offered by the program. 

Results of Table 5.4 similarly show that while for a few states PDSI before the growing 
season has a significant effect on hay yield, for the majority of states (21 out of 29 states), it 
is the PDSI during the growing season that significantly affects hay yield.  This finding again 
indicates that restricting interval selection to only during the growing season should not 
negatively affect the risk management offered by the program. 

As noted earlier, to distinguish between different parts within a state that use irrigated or non-
irrigated practice, county-level data are used to derive state-level yield data as an alternative 
to the all-practice state-level data.  NASS reports yield data for a limited number of counties.  
Agriculture Census data, available from NASS, were used to identify whether a county 
within a state is under a dominantly irrigated or non-irrigated practice.  If the percentage of 
irrigated acres in hay production in a county is more than 50 percent of total acres in hay 
production, the county is designated as an irrigated county.  Otherwise, the county is 
designated as the non-irrigated county.  State-level yields for irrigated and non-irrigated 
practice were then calculated as a weighted average of the county yields with acreage being 
used as weights.   

The results of the analysis using the yield data obtained as above are reported in Tables 5.7 
through 5.12.  The results from Tables 5.7 – 5.12 provide a similar picture as the earlier results 
using state-level data.  While some differences were found in the relationship between yield 
and weather variables like precipitation, temperature, and PDSI for the irrigated versus non-
irrigated practices within a state, these differences cannot be generalized across states. 

Finally, we did the same analysis at the county level for 1,700 counties to further test whether 
the findings use state-level data are consistent at the county level.  The story of Table 5.1 
repeats here.  Only 4 counties (0.24%) have 8 months of precipitation effect as 
significant.  Another 17 counties (1%) have 7 months of significant precipitation effect.  41 
counties (2.41%) have 6 months of significant precipitation effect.  The rest of the counties, 
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1,638 of them (96.35%) have only 5 or fewer months of significant precipitation effect.  For 
the Western states (CA, AZ, NM, and NV), 47 of the 56 counties (83.93%) have only 3 or 
fewer months of significant precipitation effect, or 39 of the 56 counties (69.64%) have only 
2 or fewer months of significant precipitation effect. 

The results for the case of the alfalfa hay yield are presented in tables 5-13 – 5.18.  Findings 
for the case of the alfalfa hay yield are similar to findings for the case of other (excluding 
alfalfa) hay yield discussed above.  

We believe this provides strong evidence of two things.  First, there is little evidence in the 
forage literature or our analysis that producers suffer from significant rainfall risk in more 
than eight months per year.  However, because production systems sometimes vary even 
within a county, we believe producers may need the flexibility to choose the periods that best 
fit their operation and reduce the basis risk for their farm.  Ultimately, we recommend 
increasing the minimum percentage of value in any one index interval to 25 percent if two-
month intervals are used or 33 percent if three-month intervals are used.  This will avoid the 
paperwork of additional indices and will require producers to focus participation in periods 
that most affect production. 
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Table 5-1. Results of the stepwise regression of the hay (excluding alfalfa) yield on monthly precipitation and temperature 

 

Prod_Pract State Constant Trend P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 P_max T_max Rsq
All AZ 10.582*** 0.032*** 0.009* -0.008*** -0.248*** -0.035** 2 2 0.71
All CA 3.955*** 0.028*** -0.001* -0.021** -0.009* -0.098*** 3 1 0.76
All CO 3.600*** 0.007*** 0.005*** 0.048*** -0.037** -0.103*** 1 3 0.64
All ID 1.869*** 0.012*** -0.002** 0.003*** 0.003** 0.009*** -0.047*** 0.029** 0.038*** 4 3 0.74
All IL 1.384*** 0.008** 0.003*** 0.003** 0.002* 3 0 0.5
All IA 3.670*** 0.003*** -0.002* 0.020* 0.042** -0.085*** 2 3 0.47
All KS 4.526*** 0.001** 0.002*** 0.001** 0.020*** -0.023*** -0.067***-0.033** -0.023* -0.029*** 3 6 0.86
All KY 1.172** 0.001* 0.001* 0.004*** 0.002** 0.002*** 0.026** 0.046*** -0.041* 5 3 0.74
All MI 3.119*** -0.005** 0.003* -0.057* 2 1 0.26
All MN 1.695*** -0.012*** 0.003** -0.026* 0.051** 1 2 0.39
All MO 2.729*** 0.002*** 0.002*** 0.003*** 0.001** 0.001* 0.030*** -0.047*** -0.056*** 0.014** 5 4 0.8
All MT 0.775*** 0.008*** 0.004*** 0.002** 0.007*** 3 0 0.7
All NE -0.299 0.010*** 0.003*** 0.002*** 0.001* 0.003** 0.023** 0.024** -0.023*** 4 3 0.85
All NV 1.777*** 0.019*** 0.006*** -0.036* 0.040** 1 2 0.69
All NM 2.265** 0.018*** 0.051** -0.146***0.106*** -0.067*** 0 4 0.62
All NY 3.266*** -0.005** 0.001* -0.071*** 1 1 0.45
All ND 0.922*** 0.009*** 0.011*** 0.003*** 0.004*** 0.002** -0.004*** 0.004*** -0.030* 6 1 0.84
All OH 4.862*** 0.002* -0.003*** 0.002** 0.055*** -0.075*** -0.076*** -0.032***3 4 0.68
All OK 1.527** 0.001* 0.003*** 0.001* -0.043*** -0.043** 0.038** 3 3 0.7
All OR 1.400*** 0.017*** 0.003*** 0.001* 0.001* 3 0 0.72
All PA 1.074*** -0.002* 0.003*** 0.003*** 0.002** 0.040* 4 1 0.6
All SD 0.293 0.010*** 0.008*** 0.003*** 0.002** 0.002*** 0.003* -0.015*** -0.020*** 0.029** 5 3 0.86
All TX 8.981*** 0.005*** -0.180*** -0.085* 1 2 0.59
All UT 2.555*** 0.013*** 0.003*** -0.001* 0.004*** 0.003*** -0.005***-0.020***-0.022** -0.059***0.025** -0.034** 5 5 0.87
All WI 2.062*** 0.005*** -0.034*** 1 1 0.3
Irrig CO 1.748*** 0.014*** 0.004* 0.006** 0.004*** 0.007*** -0.044* 4 1 0.83
Irrig MT 1.294*** 0.013*** 0.003** 0.003* -0.001** 0.004*** 0.001** -0.004*** 0.005*** -0.027*** -0.029*** 7 2 0.97
Non_Irrig CO 0.792** 0.002* 0.007*** 0.008*** -0.052* -0.029** 3 2 0.74
Non_Irrig MT 0.296** 0.006*** 0.002* 0.012*** 0.020** 3 1 0.75
Total 7 9 1 3 15 13 14 5 4 8 7 2 3 6 3 6 4 5 6 9 5 6 7 4
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Table 5-2. Results of the regression of the hay (excluding alfalfa) yield on precipitation and temperature prior to- 
and during the growing season 

 

 

Prod_Pract State Constant Trend P_prior P_during T_prior T_during Rsq
All AZ 4.692** 0.030*** -0.001 0.001 -0.032 -0.045 0.41
All CA 3.04 0.038*** 0 0.001 -0.158* 0.029 0.68
All CO 1.464 0.008* 0.002 0.001 0.028 -0.045 0.36
All ID 1.908** 0.007** 0 0.002** 0.051 -0.035 0.42
All IL 1.711 0.006 -0.001 0.001** 0.004 0.006 0.35
All IA 2.613** -0.003 0 0.001 0.002 -0.036 0.09
All KS 3.101*** -0.003 0 0.001*** -0.004 -0.092** 0.69
All KY 2.561* 0.006 0 0.001*** 0.039 -0.07 0.46
All MI 3.171** -0.002 -0.001 0.001 0.003 -0.074 0.12
All MN 2.005** -0.012*** 0.001 0.001* 0.002 -0.026 0.28
All MO 2.579*** 0.004 0 0.001*** 0.046** -0.089** 0.57
All MT 0.448 0.007** 0.001 0.002*** 0.019 0.017 0.52
All NE -0.338 0.007*** 0.001 0.002*** 0.005 0.04 0.69
All NV 1.731* 0.016*** 0.001 0 0.057 -0.044 0.61
All NM 2.423 0.016*** 0 0 -0.069 -0.014 0.44
All NY 2.945*** -0.006* 0 0.001* 0.017 -0.076 0.31
All ND 0.248 0.007** 0.002** 0.002*** -0.002 0.007 0.59
All OH 4.688*** -0.004 0 0.001* 0.042 -0.150** 0.33
All OK 4.124*** 0.002 0.001*** 0.001** -0.013 -0.135*** 0.56
All OR 0.715 0.018*** 0.000** 0.001* -0.012 0.04 0.67
All PA 1.905 0.007 0 0.001*** -0.011 -0.025 0.34
All SD 0.928*** 0.010*** 0.001* 0.002*** -0.018 -0.029** 0.66
All TX 4.168* -0.010* 0.001* 0.002** 0.083* -0.157 0.62
All UT 2.841*** 0.011*** 0 0.001 -0.017 -0.059* 0.58
All WI 1.230* -0.016*** 0.001 0.002*** -0.001 -0.025 0.42
Irrig CO -0.828 0.012** 0.003*** 0.003*** -0.055 0.08 0.69
Irrig MT 0.763 0.017*** 0.001 0.001* -0.016 0.018 0.53
Non_Irrig CO -0.641 -0.003 0.001 0.003** -0.116* 0.063 0.43
Non_Irrig MT -0.223 0.006 0.001 0.003*** 0.034 0.017 0.49



105 
 

 

Table 5-3. Results of the stepwise regression of the hay (excluding alfalfa) yield on monthly PDSI 

 

  

Prod_Pract State Constant Trend PDSI1 PDSI2 PDSI3 PDSI4 PDSI5 PDSI6 PDSI7 PDSI8 PDSI9 PDSI10 PDSI11 PDSI12 PDSI_max Rsq
All AZ 3.486*** 0.028*** 0 0.36
All CA 2.348*** 0.032*** 0 0.62
All CO 1.429*** 0.010*** 0.055*** 1 0.34
All ID 1.861*** 0.010*** -0.178* 0.216** 2 0.45
All IL 2.103*** 0.007** -0.220*** 0.205*** -0.147* 0.205** 4 0.57
All IA 2.226*** 0 0
All KS 1.802*** -0.003* -0.041*** 0.089*** 2 0.59
All KY 2.071*** -0.105** 0.085* 0.068*** 3 0.44
All MI 2.003*** 0 0
All MN 2.149*** -0.014*** 0.072*** 1 0.48
All MO 1.809*** 0.072*** -0.028* 2 0.37
All MT 1.326*** 0.008*** -0.068*** 0.106*** 2 0.6
All NE 1.127*** 0.009*** 0.043*** 1 0.62
All NV 1.264*** 0.018*** 0.029** 1 0.6
All NM 1.703*** 0.012*** 0.072** -0.091*** 2 0.51
All NY 1.980*** -0.005* -0.021** 1 0.27
All ND 1.389*** -0.400*** 0.157*** 0.336** 3 0.84
All OH 2.253*** 0 0
All OK 1.595*** 0.069*** -0.033** 2 0.38
All OR 1.716*** 0.019*** 0.029** 1 0.66
All PA 2.040*** -0.172*** 0.145** 0.101*** 3 0.51
All SD 1.195*** 0.009*** 0.115*** -0.051*** 2 0.78
All TX 2.043*** -0.589*** 0.679*** -0.071* 3 0.56
All UT 1.899*** 0.011*** -0.111** 0.121*** 2 0.59
All WI 2.343*** -0.021*** 0.129*** 1 0.46
Irrig CO 1.556*** 0.020*** 0.054** -0.149*** 0.173*** 3 0.84
Irrig MT 1.627*** 0.018*** -0.071** 0.101*** 2 0.6
Non_Irrig CO 1.287*** 0.060* -0.184*** 0.192*** 3 0.57
Non_Irrig MT 0.949*** 0.009** -0.095*** 0.135*** 2 0.54
Total 1 1 0 2 9 9 11 6 4 2 1 3
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Table 5-4. Results of the regression of the hay (excluding alfalfa) yield on PDSI before- and during the growing season 

 

Prod_Pract State Constant Trend PDSI_prior PDSI_during Rsq
All AZ 3.463*** 0.030*** 0.003 0.008 0.36
All CA 2.300*** 0.035*** -0.034 0.061 0.65
All CO 1.427*** 0.010*** -0.003 0.060** 0.31
All ID 1.913*** 0.008*** -0.008 0.054** 0.39
All IL 2.118*** 0.007* -0.041 0.085** 0.31
All IA 2.251*** -0.002 -0.034 0.048 0.05
All KS 1.758*** -0.002 -0.070*** 0.112*** 0.48
All KY 1.923*** 0.008** -0.042 0.064** 0.33
All MI 2.100*** -0.005 -0.059 0.063 0.07
All MN 2.149*** -0.014*** -0.02 0.098*** 0.49
All MO 1.733*** 0.004 -0.050** 0.088*** 0.37
All MT 1.329*** 0.008*** -0.02 0.056*** 0.47
All NE 1.126*** 0.008*** -0.032 0.073*** 0.63
All NV 1.274*** 0.018*** -0.01 0.037 0.59
All NM 1.737*** 0.012*** -0.023 0.009 0.38
All NY 2.001*** -0.006** -0.036** 0.025 0.29
All ND 1.321*** 0.004 -0.068*** 0.155*** 0.75
All OH 2.395*** -0.007 -0.083* 0.090* 0.14
All OK 1.564*** 0.001 -0.039* 0.083*** 0.33
All OR 1.709*** 0.019*** 0.003 0.026 0.65
All PA 1.916*** 0.008** -0.044 0.105*** 0.37
All SD 1.203*** 0.008*** -0.066*** 0.132*** 0.77
All TX 2.220*** -0.009** -0.173*** 0.211*** 0.52
All UT 1.925*** 0.009*** -0.035 0.047** 0.5
All WI 2.351*** -0.022*** -0.015 0.153*** 0.44
Irrig CO 1.550*** 0.019*** 0.012 0.072*** 0.66
Irrig MT 1.632*** 0.018*** -0.033 0.060** 0.49
Non_Irrig CO 1.264*** 0 0.008 0.065* 0.36
Non_Irrig MT 0.954*** 0.009* -0.042 0.081** 0.33
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Table 5-5. Results of the nonlinear regression of the hay (excluding alfalfa) yield on precipitation and temperature and neighboring states 

Prod_Pract State Constant Trend P_prior P_during T_prior T_during P_prior^2 P_during^2 T_prior^2 T_during^2 NB_P NB_T Rsq
All AZ -16.34 0.037*** 0.003 -0.038** 0.209 1.980* 0 0.000** -0.007 -0.049* 0.001 0.110* 0.61
All CA -86.97* 0.040*** 0.004** -0.011* 0.663 8.670* 0.000** 0.000** -0.041 -0.219* -0.001 0.028 0.82
All CO -10.25 0.008* 0.02 -0.004 0.02 1.479 0 0 -0.008 -0.052 0.001 -0.026 0.44
All ID 3.451 0.009*** -0.004 -0.015** 0.057 0.11 0 0.000** 0.009 -0.005 -0.001 -0.002 0.57
All IL 24.771 0.008 -0.001 0.004 0.073 -2.461 0 0 -0.012 0.063 0 0.006 0.41
All IA -6.828 -0.004 -0.001 0.010*** -0.003 0.586 0 -0.000*** -0.005 -0.016 0.001 0.024 0.66
All KS 12.923 -0.003 -0.002 0.002 0.034 -1.076 0 0 -0.003 0.024 0.001 0.003 0.72
All KY -5.756 0.009* -0.002 0.004 0.293 0.611 0 0 -0.021 -0.016 -0.001 -0.012 0.52
All MI 9.528 -0.002 0.012 0.030** 0.006 -2.262 0 -0.000** 0.006 0.074 -0.001 0.052 0.3
All MN -14.72 -0.015*** 0.002 -0.003 -0.024 2.232 0 0 -0.003 -0.074 0.003* 0.014 0.44
All MO 0.709 0.003 0.003 0.005** 0.008 -0.107 0 0.000* 0.004 0 0 0.013 0.66
All MT -0.708 0.006** 0 0.001 -0.017 0.204 0 0 -0.01 -0.007 0.001 0.019 0.55
All NE -1.67 0.007** 0 0.001 0.039 0.196 0 0 -0.012 -0.004 0 0 0.71
All NV -13.01 0.015*** -0.004 0.003 0.011 1.87 0 0 0.008 -0.058 0.001 -0.050** 0.78
All NM 7.878 0.015*** 0.002 -0.006 0.343 -0.67 0 0 -0.034 0.018 -0.001 -0.022 0.52
All NY -22.27* -0.003 -0.001 0 0.026 3.148* 0 0 -0.002 -0.103* -0.003***0.036* 0.61
All ND -2.499 0.004 -0.002 0.009* 0.133 0.232 0 0 0.014 -0.007 0.002 0.016 0.7
All OH -2.744 -0.006 0.003 0.011** 0.127 0.158 0 -0.000** -0.018 -0.006 -0.002 0.012 0.52
All OK -19.45 0.002 0.003 0.005*** -0.267 1.761 0 0.000** 0.015 -0.04 0.001 0.03 0.74
All OR -7.506 0.018*** 0.002 -0.001 -0.102 1.25 0 0 0.016 -0.043 -0.001 -0.018 0.7
All PA -0.195 0.001 0.014** 0.003 -0.073 -0.263 -0.000** 0 0.011 0.006 0.003** 0.011 0.56
All SD -0.396 0.008** 0.003 0.002 -0.01 0.055 0 0 0.003 -0.002 0.002 0.028 0.72
All TX 49.825 -0.016** 0.006* 0.001 -2.416** -2.608 -0.000* 0 0.101** 0.05 -0.001 -0.055 0.74
All UT 1.479 0.010*** -0.003 0.002 -0.017 0.107 0 0 -0.004 -0.005 0.003 0.018 0.64
All WI -3.785 -0.018*** 0 0.007 0.061 0.422 0 0 0.008 -0.016 0.001 0.102** 0.64
Irrig CO -7.177 0.008 0.030* 0.001 0.034 0.813 -0.000* 0 -0.064 -0.026 0 -0.078* 0.81
Irrig MT -5.824 0.016*** -0.015 -0.004 -0.086 1.38 0 0 -0.027 -0.052 0.001 -0.011 0.61
Non_Irrig CO -17.64 -0.007 0.054** -0.009 -0.06 2.185 -0.000** 0 -0.041 -0.074 0 -0.102* 0.69
Non_Irrig MT -5.356 0.006 -0.009 0 0.021 0.971 0 0 -0.008 -0.036 0.002 0.016 0.55
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Table 5-6. Results of the nonlinear regression of the hay (excluding alfalfa) yield on PDSI and neighboring states 

Prod_Pract State Constant Trend PDSI_prior PDSI_during PDSI_prior^2 PDSI_during^2 NB_PDSI Rsq
All AZ 3.352*** 0.008*** -0.023 0.066 0.003 0.021 -0.041 0.4
All CA 2.353*** 0.000*** -0.025 0.061 -0.012 -0.003 -0.005 0.68
All CO 1.529*** 0.009*** -0.009 0.027 -0.003 -0.006 0.064** 0.45
All ID 1.854*** 0.003*** -0.017 0.041 -0.005 0.011 0.035 0.44
All IL 2.126*** 0.077*** -0.04 0.077* 0.013 -0.02 0.01 0.35
All IA 2.350*** 0.303*** -0.032 -0.016 0.009 -0.023** 0.084** 0.27
All KS 1.704*** 0.761*** -0.059*** 0.060*** 0.011** -0.005 0.069*** 0.73
All KY 1.944*** 0.058*** -0.059** 0.087*** 0.020* -0.024** 0.003 0.43
All MI 2.123*** 0.199*** -0.052 0.026 0.021 -0.02 0.068 0.21
All MN 2.125*** 0.000*** -0.031 0.090*** 0.026*** -0.011 0.027 0.65
All MO 1.710*** 0.205*** -0.059** 0.098*** 0.011 -0.007 -0.002 0.42
All MT 1.334*** 0.001*** -0.018 0.048** 0.006 -0.006 0.013 0.5
All NE 1.130*** 0.000*** -0.031 0.068** -0.002 0 0.007 0.64
All NV 1.265*** 0.000*** -0.021 0.008 -0.002 -0.003 0.052** 0.65
All NM 1.735*** 0.003*** -0.024 0.02 -0.001 -0.001 -0.021 0.39
All NY 2.042*** 0.050*** -0.041** 0.023 -0.008 -0.001 0.008 0.35
All ND 1.386*** 0.052*** -0.087*** 0.186*** -0.003 -0.014** -0.034** 0.82
All OH 2.386*** 0.278*** -0.098** 0.098* 0.023** -0.027* -0.024 0.27
All OK 1.629*** 0.887*** -0.069*** 0.099*** 0.017** -0.028*** 0.03 0.57
All OR 1.657*** 0.000*** 0.01 -0.007 0.014* -0.007 0.036 0.73
All PA 2.050*** 0.484*** -0.060** 0.064 0 -0.02 0.045 0.47
All SD 1.222*** 0.000*** -0.048** 0.122*** 0.014** -0.018** -0.011 0.81
All TX 2.211*** 0.085*** -0.183*** 0.206*** 0.012 -0.005 0.028 0.54
All UT 1.891*** 0.000*** -0.015 0.02 0.006 -0.004 0.021 0.55
All WI 2.359*** 0.000*** -0.026 0.162** 0.045** -0.047** 0.007 0.54
Irrig CO 1.543*** 0.000*** 0.01 0.072** 0.006 -0.003 0.002 0.68
Irrig MT 1.614*** 0.002*** -0.038 0.066 0.003 0.01 0.007 0.57
Non_Irrig CO 1.312*** 0.982*** -0.001 0.038 -0.006 -0.002 0.044 0.41
Non_Irrig MT 0.960*** 0.101*** -0.037 0.056 0.005 -0.004 0.025 0.35
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Table 5-7. Results of the stepwise regression of the hay (excluding alfalfa) yield on monthly precipitation and temperature using county-level data 

 

Prod_Pract Irrigated State ConstantTrend P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 P_max T_max Rsq
All No AL 3.717*** 0.024*** . . . . . 0.002*** 0.001** . . . 0.002*** . -0.035***-0.030* . 0.055** . . . -0.111***. . . . 3 4 0.89
All No AZ 13.343** . -0.009***. . . . . . . . . . . . . 0.111*** . . . . -0.367***. . . -0.131* 1 3 0.67
All No IL 2.227*** . . . . . 0.002** . . . . . . . . . . . . . . . . . -0.039** . 1 1 0.3
All No KS 3.851*** . . . . . 0.002*** . . . 0.002** . . . . 0.019** -0.018* . . . -0.085***. . . -0.025** . 2 4 0.65
All No KY 2.108*** 0.011*** . . . . . 0.003*** . 0.003*** . . . . . 0.025** . . . . . . -0.044* . . . 2 2 0.7
All No MN 1.875*** -0.013***. . . . . . 0.003** . . . . . . . . . . . . . . . . . 1 0 0.41
All No NE 0.500*** 0.011*** . . . . 0.002*** 0.002*** . . 0.001* . . . -0.016***0.015*** . . 0.014* . . . . . -0.021***. 3 4 0.89
All No NV 1.354*** 0.058*** . . . -0.009* . . . . . . . 0.006* . . . . . . . . . . -0.072** 0.127**2 2 0.83
All No NJ 5.789*** -0.013***. . -0.001** . . . . . . . . 0.001*** . . . . -0.029** -0.079***. -0.080***. 0.021 . . 2 4 0.87
All No NM -0.104 0.031*** . 0.022** 0.024** . . . . . . . . . . . . . . . . . . . 0.147** . 2 1 0.41
All No NY 2.459*** -0.010***. . . . 0.001 . . . . . . . . . . -0.034** 0.035** . . -0.055** . 0.038** . . 1 4 0.62
All No ND 0.391*** 0.009*** . 0.009*** . 0.004*** 0.003*** 0.003*** 0.002*** -0.002* . 0.004*** . . . . . . . . . . . . . . 7 0 0.86
All No OK 3.324*** . . . . 0.002** 0.001*** 0.002*** . . . . . 0.001* -0.035***. . . . -0.034* . -0.057***0.035** -0.031* . . 4 5 0.8
All No OR 1.930*** 0.006** . . . -0.002* 0.004*** . . . . . . 0.001** . . . . . . . . . . -0.027* . 3 1 0.44
All No PA 2.093*** . . . . . . 0.003*** 0.002** . . 0.003*** . . . . . . . -0.058* . . . . 0.052** . 3 2 0.58
All No SD 2.117*** . 0.008** . . 0.006*** 0.004*** 0.002*** . 0.004*** . . . . . . . . . -0.055***-0.043***. . 0.023** . . 5 3 0.93
All No TN 3.054*** . . . . 0.001* 0.001** 0.001* . 0.004*** . . . -0.002***. . . . . . . -0.070***. . 0.036*** . 5 2 0.81
All No UT 2.367*** . . 0.002*** . . . . 0.003** . . 0.004*** -0.004***-0.002** . . . -0.055***. . -0.030***. . 0.043*** 0.030*** . 5 4 0.92
All No VA 0.999*** . . . -0.003***0.004*** 0.002*** . 0.007*** . -0.001* . 0.002** . . . . . . . . . . . . . 6 0 0.81
All No WA 5.167*** . 0.003*** -0.003** . . . -0.012***. . . . . . . . . . . -0.149***. . . . . . 3 1 0.42
All No WV 2.873*** . . . 0.002* . . 0.003*** . . . . . . . . . . . . -0.072** . . . . . 2 1 0.35
All No WI 1.598*** -0.019***. . . . . 0.003** 0.004** . . . . . . . . . . . . . . . . . 2 0 0.46
All Yes AZ 4.927*** . . . . . . . . . . . . . . . . . . . . . . . . -0.187* 0 1 0.13
All Yes CO 2.254*** . . . . . . . . 0.005*** . 0.005*** -0.003** . . 0.049*** . . 0.043** . -0.068** . . . . . 3 3 0.6
All Yes KS -1.039 . . . . . . . 0.004** . . . . . . . . . . . . . 0.073 0.118** . . 1 2 0.35
All Yes MT 0.946*** 0.008*** . . 0.002* 0.003*** . 0.003*** 0.003*** . . . 0.005*** . . . . 0.035*** -0.035***. . . . -0.024***. . 5 3 0.85
All Yes NE 0.233 0.018*** . . . . 0.002* . . . . . . . . . . . . . . 0.046* . . -0.048***. 1 2 0.5
All Yes NV 2.066*** 0.022*** . . . -0.005** . . . . . . . . . . . -0.024* -0.038** . . . . . . 0.071**1 3 0.82
All Yes NM 1.783 0.015*** . . . . 0.003* . . . . . . . . . . . 0.074*** . -0.152***0.119*** . . -0.071***-0.057* 1 5 0.67
All Yes OR 1.245*** 0.021*** . . . . 0.005*** . . . . . . 0.002*** . . . . . . . . . . -0.036** . 2 1 0.72
All Yes UT 4.098*** 0.010*** . 0.003*** -0.002* . . 0.005** . . . . . . . . . . . . . -0.082***. -0.036** . . 3 2 0.78
All Yes WA 7.081*** 0.073*** . . . . . . . . . . . -0.004* . . . . . -0.240** . . . . . . 1 1 0.55
All Yes WY 0.701*** 0.006*** . . . 0.003* 0.003*** 0.003** . 0.006*** . . . . . . 0.024** . . . . . . . . . 4 1 0.71
Irrig Yes CO 2.746*** 0.016*** . . . . . . . . . 0.007*** . . . . . . . . -0.069** . . . . . 1 1 0.64
Irrig Yes MT 1.114*** 0.016*** . . . 0.005*** . . 0.004*** . . . 0.002* . . . -0.014** . -0.037***. . . 0.038*** . -0.015** . 3 4 0.93
Irrig Yes WY 1.652*** 0.011*** . . . . 0.002** 0.002* . 0.009*** . . . . . . 0.019 . . . . . -0.045***-0.037** . . 3 3 0.72
Non_Irrig Yes CO 2.701*** . . -0.013** . . . . . . -0.010** . . . . . . -0.107** . . . . . . . . 2 1 0.39
Non_Irrig Yes MT 1.041*** 0.003 0.004** . . 0.003** . 0.004*** 0.003*** . . . 0.010*** -0.005***. . . . . -0.037***. . . -0.025** -0.012** 0.019**6 4 0.94
Non_Irrig Yes WY 0.058 . . . . 0.005*** 0.003** 0.007*** . . . . . . -0.021* . . . . . . . . . . . 3 1 0.73
Total 4 6 6 13 16 17 11 7 4 5 7 9 4 5 5 6 8 7 7 9 5 10 14 6
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Table 5-8. Results of the regression of the hay (excluding alfalfa) yield on precipitation and temperature 
prior to- and during the growing season 

 

Prod_Pract Irrigated State Constant Trend P_prior P_during T_prior T_during Rsq
All No AL 4.319** 0.020*** 0 0.001*** -0.08 -0.088 0.68
All No AZ 2.733 -0.014 -0.002** 0.003 -0.052 0.082 0.33
All No IL 2.181 0.003 -0.001* 0.001 -0.036 0.011 0.32
All No KS 3.364*** -0.005* 0 0.001*** -0.014 -0.099** 0.61
All No KY 1.66 0.007* 0 0.001*** 0.032 -0.035 0.53
All No MN 1.690* -0.015*** 0 0.001* -0.003 -0.001 0.38
All No NE 0.439 0.008*** 0 0.001*** -0.003 0.006 0.76
All No NV -1.92 0.053*** 0.002 0.001 0.034 0.147 0.65
All No NJ 6.137*** -0.011** 0 0 0.05 -0.231*** 0.55
All No NM 1.786 0.024 0.002 0 0.188 -0.068 0.19
All No NY 2.186*** -0.009*** 0 0.001* 0.002 -0.032 0.37
All No ND 0.307 0.010*** 0.001** 0.002*** -0.008 0 0.67
All No OK 3.011*** 0 0.001*** 0.001*** -0.024 -0.088** 0.61
All No OR 1.658* 0.005 0 0.001 -0.002 0.01 0.12
All No PA 2.219* 0.006 0 0.001** 0.008 -0.048 0.29
All No SD 1.563 -0.002 0 0.002*** 0.008 -0.064 0.56
All No TN 2.512** 0.002 0 0.001*** 0.023 -0.051 0.42
All No UT 2.612** 0.007 0 0.001 0.013 -0.06 0.34
All No VA 4.656** 0.015* 0 0.001** 0.018 -0.176* 0.5
All No WA 3.735** 0.003 0 0 -0.008 -0.083 0.04
All No WV 3.560*** 0.010** 0 0.001 0.01 -0.132* 0.31
All No WI 1.605 -0.020*** 0.001 0.002*** -0.011 -0.031 0.45
All Yes AZ 9.491 0.027 -0.001 -0.001 -0.063 -0.236 0.12
All Yes CO 1.469 0.004 0.001 0.001 -0.014 -0.036 0.26
All Yes KS 0.571 -0.001 -0.001 0.002 0.097 0.036 0.12
All Yes MT 0.848 0.007*** 0 0.002*** 0.013 -0.001 0.54
All Yes NE 0.266 0.014*** 0 0.001 -0.043 0.047 0.36
All Yes NV 1.509 0.024*** 0.001 0.001 0.035 -0.035 0.68
All Yes NM 0.642 0.008 0.001 0 -0.091 0.076 0.21
All Yes OR 1.777 0.021*** 0 0.001 0.02 -0.046 0.55
All Yes UT 3.232*** 0.011** 0 0.001 -0.007 -0.076 0.48
All Yes WA 5.639 0.082*** -0.001 0.004* -0.107 -0.205 0.54
All Yes WY 0.368 0.008*** 0 0.003*** 0.009 0.012 0.66
Irrig Yes CO -0.329 0.014*** 0.003*** 0.002** -0.060** 0.052 0.7
Irrig Yes MT 1.016 0.018*** 0 0.002* -0.011 0.005 0.54
Irrig Yes WY 0.788 0.012*** 0.001 0.002 -0.011 -0.006 0.48
Non_Irrig Yes CO -0.462 0.002 0.001 0.002 -0.066 0.056 0.11
Non_Irrig Yes MT 0.111 0.009** 0 0.003*** 0.018 0.005 0.46
Non_Irrig Yes WY -0.607 -0.001 0 0.004*** -0.03 0.034 0.67
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Table 5-9. Results of the stepwise regression of the hay (excluding alfalfa) yield on current and eleven lagged values of PDSI using county-level data
Prod_Pract Irrigated State Constant Trend PDSI1 PDSI2 PDSI3 PDSI4 PDSI5 PDSI6 PDSI7 PDSI8 PDSI9 PDSI10 PDSI11 PDSI12 PDSI_max Rsq
All No AL 1.891*** 0.018*** . . . . . . . 0.091*** . . . . 1 0.72
All No AZ 3.981*** . . . . . . . . . . . . . 0 0
All No IL 2.272*** . . . . . . 0.056** . . . . . . 1 0.18
All No KS 1.843*** -0.006** -0.044** . . . . . . . 0.089*** . . . 2 0.53
All No KY 1.945*** 0.007** . . . . . . . . 0.070*** . -0.027* . 2 0.52
All No MN 2.180*** -0.017*** . . . . . . 0.067*** . . . . . 1 0.53
All No NE 1.096*** 0.010*** . -0.068*** . . 0.050** 0.043** . . . . . . 3 0.74
All No NV 1.005*** 0.055*** . . . . . . . . . . . . 0 0.62
All No NJ 2.204*** -0.020*** . . . . -0.181*** 0.131*** . . 0.042* . -0.139* 0.178** 5 0.74
All No NM 1.767*** 0.026** . . . . . . . . . . . . 0 0.15
All No NY 2.018*** -0.008*** . . . . . . . . . . . . 0 0.26
All No ND 1.319*** 0.004* -0.042** . . . . 0.140*** . . . . . . 2 0.79
All No OK 1.593*** . . . . . . . . 0.077*** . -0.034** . . 2 0.47
All No OR 2.137*** . . . . . . . . . . . . . 0 0
All No PA 2.061*** . . . . . . . . . 0.076*** . . . 1 0.31
All No SD 1.423*** . . . -0.065** . . . 0.120*** . . . . . 2 0.72
All No TN 2.098*** . -0.071*** . . . . . . 0.078*** . 0.183** -0.141* . 4 0.54
All No UT 1.789*** 0.007** . . . . . . . 0.034*** . . . . 1 0.42
All No VA 2.108*** . . . -0.133*** 0.082 . . . 0.126*** . . . . 3 0.76
All No WA 2.598*** . . . . . . . . . . . . . 0 0
All No WV 1.605*** 0.009** . . . . . . . . . . . . 0 0.14
All No WI 2.318*** -0.022*** . . . . . . . 0.111*** . . . . 1 0.49
All Yes AZ 3.865*** . . . . . . . . . . . . . 0 0
All Yes CO 1.604*** . . . . . . . . . 0.038** . . . 1 0.14
All Yes KS 2.374*** . . . . . . . . . . . . . 0 0
All Yes MT 1.338*** 0.007*** . . . . -0.074*** . 0.109*** . . . . . 2 0.67
All Yes NE 1.375*** 0.013*** -0.086* . . . 0.107** . . . . . . . 2 0.4
All Yes NV 1.168*** 0.026*** . . . . . . . . 0.035*** . . . 1 0.7
All Yes NM 1.868*** . . . . . . . . . . -0.042** . . 1 0.13
All Yes OR 1.607*** 0.022*** . . . -0.100** 0.136*** . . . . . . . 2 0.62
All Yes UT 2.113*** 0.011*** . . . . -0.129*** . . 0.135*** . . . . 2 0.55
All Yes WA 2.980*** 0.069*** . . . . . . . . . . . . 0 0.41
All Yes WY 1.175*** 0.010*** -0.029* . . . . . 0.073*** . . . . . 2 0.7
Irrig Yes CO 1.540*** 0.021*** . . . . . -0.100** 0.146*** . . . . 0.041*** 3 0.82
Irrig Yes MT 1.649*** 0.016*** . . . . -0.086*** . 0.149*** . -0.048* . . . 3 0.69
Irrig Yes WY 1.261*** 0.013*** -0.036** . . . . . . . 0.066*** . . . 2 0.55
Non_Irrig Yes CO 1.227*** . . . . . . . . . . . . . 0 0
Non_Irrig Yes MT 0.950*** 0.009** . . . . -0.083** . 0.129*** . . . . . 2 0.55
Non_Irrig Yes WY 0.860*** . . . . . . . . 0.102*** . . . -0.051*** 2 0.73
Total 6 1 2 2 8 5 7 7 8 3 3 3
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Table 5-10. Results of the regression of the hay (excluding alfalfa) yield on PDSI before- and during the 
growing season using county-level data 

 

Prod_Pract Irrigated State Constant Trend PDSI_prior PDSI_during Rsq
All No AL 1.878*** 0.020*** -0.063** 0.143*** 0.73
All No AZ 4.303*** -0.022 -0.04 -0.036 0.08
All No IL 2.280*** -0.001 -0.014 0.071 0.16
All No KS 1.818*** -0.005** -0.068*** 0.108*** 0.42
All No KY 1.906*** 0.010*** -0.039 0.073*** 0.43
All No MN 2.184*** -0.017*** -0.021 0.088*** 0.51
All No NE 1.110*** 0.009*** -0.035** 0.065*** 0.69
All No NV 0.929*** 0.060*** 0.092 -0.048 0.65
All No NJ 2.135*** -0.016*** -0.008 0.028 0.33
All No NM 1.733*** 0.028** -0.11 0.12 0.18
All No NY 2.022*** -0.009*** -0.024 0.024 0.31
All No ND 1.316*** 0.005* -0.047** 0.142*** 0.76
All No OK 1.600*** 0 -0.050** 0.095*** 0.42
All No OR 2.057*** 0.005* -0.022 0.031* 0.14
All No PA 1.925*** 0.007* -0.037 0.094*** 0.32
All No SD 1.422*** 0 -0.072** 0.142*** 0.67
All No TN 2.055*** 0.005 -0.025 0.065*** 0.34
All No UT 1.798*** 0.007* -0.023 0.056* 0.39
All No VA 2.015*** 0.006 -0.096*** 0.165*** 0.67
All No WA 2.545*** 0.003 -0.02 0.014 0.01
All No WV 1.634*** 0.007* -0.028 0.044 0.18
All No WI 2.320*** -0.022*** 0.013 0.104** 0.44
All Yes AZ 3.132*** 0.049** 0.227* -0.082 0.22
All Yes CO 1.510*** 0.005 -0.009 0.051* 0.16
All Yes KS 2.293*** 0.005 -0.004 0.041 0.04
All Yes MT 1.342*** 0.007*** -0.033** 0.064*** 0.53
All Yes NE 1.378*** 0.013*** -0.009 0.032 0.31
All Yes NV 1.173*** 0.026*** 0.008 0.031 0.69
All Yes NM 1.758*** 0.006 -0.038 0.023 0.13
All Yes OR 1.625*** 0.021*** -0.025 0.057** 0.57
All Yes UT 2.143*** 0.009** -0.070* 0.089** 0.44
All Yes WA 2.926*** 0.073*** -0.312** 0.281** 0.52
All Yes WY 1.188*** 0.009*** -0.026 0.076*** 0.68
Irrig Yes CO 1.535*** 0.021*** 0.026 0.060** 0.69
Irrig Yes MT 1.633*** 0.018*** -0.031 0.057** 0.51
Irrig Yes WY 1.303*** 0.010*** -0.043** 0.070*** 0.49
Non_Irrig Yes CO 1.109*** 0.008 -0.028 0.072 0.07
Non_Irrig Yes MT 0.956*** 0.009** -0.042 0.086*** 0.37
Non_Irrig Yes WY 0.885*** -0.002 -0.068*** 0.120*** 0.68



113 
 

Table 5-11. Results of the nonlinear regression of the hay (excluding alfalfa) yield on precipitation and temperature and neighboring states 

 

Prod_Pract Irrigated State Constant Trend P_prior P_during T_prior T_during P_prior^2 P_during^2 T_prior^2 T_during^2 NB_P NB_T Rsq
All No AL -95.47* 0.017*** 0.005 0.004* -2.515** 9.391** 0 0 0.108** -0.203** -0.001 0.007 0.82
All No AZ -191.8** -0.025* -0.004 -0.023 0.174 17.520** 0 0.000* -0.01 -0.395** 0.014** 0.261***0.71
All No IL 19.015 0.006 0.012 0.003 0.015 -2.054 0 0 -0.008 0.053 -0.002 -0.003 0.43
All No KS 18.348 -0.005* -0.002 0.004 0.041 -1.632 0 0 -0.005 0.037 0.001 -0.004 0.66
All No KY -16.62 0.010** -0.002 0.005* 0.365 1.568 0 0 -0.027 -0.038 -0.002* -0.002 0.62
All No MN -16.37 -0.016*** -0.001 -0.003 -0.019 2.493 0 0 -0.002 -0.082 0.002 0.029 0.49
All No NE 8.025 0.010*** -0.002 0.005* 0.015 -0.938 0 0 -0.009 0.027 0.001 0.017 0.81
All No NV 4.28 0.062*** 0.023 0.007 0.644 -0.867 0 0 -0.113 0.028 0.011* -0.033 0.8
All No NJ 60.805* -0.011** -0.004* 0.001 0.984** -6.310* 0.000* 0 -0.107** 0.166* -0.001 -0.038* 0.79
All No NM -134.5 0.036 -0.007 -0.024 -3.812* 16.561 0 0 0.329* -0.451 0.005 -0.092 0.35
All No NY -6.791 -0.007** -0.003 0.002 -0.008 1.1 0 0 -0.013 -0.035 -0.002***0.02 0.61
All No ND -3.397 0.006** 0.004*** 0.005 0.136** 0.4 -0.000** 0 0.013* -0.013 0.003** 0.006 0.8
All No OK -21.15 -0.003 0.002 0.003** -0.35 1.904 0 0 0.021 -0.042 0.002** 0.089***0.81
All No OR -12.75 0.002 0.001 -0.009 0.18 2.101 0 0.000* -0.029 -0.073 0.002 0.007 0.29
All No PA -11.08 0.003 0.012* 0.003 0.045 1.045 -0.000* 0 -0.012 -0.032 0.001 0.015 0.46
All No SD 16.001 0 -0.01 0.017* 0.025 -2.119 0 0 0.01 0.062 0.001 0.044 0.77
All No TN -41.82** 0.004 0.004 0.009*** 0.615* 3.501* 0.000* -0.000*** -0.039* -0.084* -0.001 0.032 0.75
All No UT 17.706 0.005 0.003 0.002 0.046 -1.974 0 0 -0.012 0.057 0.003 0.031 0.46
All No VA -58.66 0.015 0.003 -0.002 -0.03 6.141 0 0 0.002 -0.155 -0.002 -0.011 0.61
All No WA 6.107 0.003 0.001 0.004 0.427 -0.517 0 0 -0.068 0.015 -0.001 -0.08 0.24
All No WV -16.77 0.013** -0.002 0.005 0.596* 1.829 0 0 -0.071* -0.053 -0.002 0.017 0.48
All No WI -9.488 -0.021*** 0.004 0.01 0.066 0.933 0 0 0.016 -0.03 0 0.087** 0.64
All Yes AZ -69.46 0.023 -0.006 -0.022 0.96 6.642 0 0 -0.062 -0.158 0.014 0.19 0.22
All Yes CO -11.31 0.003 0.027* -0.007 0.002 1.596 -0.000* 0 -0.005 -0.055 0.001 -0.049 0.4
All Yes KS -19.23 0 0 -0.011 0.699 1.984 0 0 -0.066 -0.047 0.004 0.089 0.27
All Yes MT 1.51 0.006** 0.003 0.002 0.002 -0.163 0 0 -0.006 0.006 0.001 0.019 0.58
All Yes NE 21.658 0.016*** -0.008 0.006 0.001 -2.503 0 0 -0.023 0.071 0.001 0.067 0.49
All Yes NV -8.207 0.026*** 0 0.002 0.032 1.258 0 0 0 -0.04 0 -0.059* 0.79
All Yes NM 25.983 0.007 0.006 -0.003 0.572 -2.883 0 0 -0.056 0.081 -0.002 -0.022 0.35
All Yes OR -27.53 0.020*** 0.003 -0.004 0.108 4.137 0 0 -0.008 -0.15 0.002 -0.027 0.68
All Yes UT -7.659 0.013*** -0.004 0.002 -0.035 1.194 0 0 -0.001 -0.039 0.007** 0.074** 0.76
All Yes WA -51.12 0.084*** 0.009* 0.019 1.229** 6.858 -0.000* 0 -0.228* -0.252 -0.004 -0.086 0.76
All Yes WY -0.904 0.006*** 0.014*** 0.002 0.154*** -0.035 -0.000*** 0 0.040*** 0.003 0 0.043***0.84
Irrig Yes CO -18.67 0.018*** 0.028* -0.005 -0.102* 2.528 -0.000* 0 0.011 -0.086 0.001 -0.071 0.8
Irrig Yes MT -5.05 0.018*** -0.006 -0.002 -0.115 1.058 0 0 -0.031 -0.039 0 0.006 0.59
Irrig Yes WY 3.59 0.009** 0.01 0.007 0.054 -0.744 0 0 0.02 0.029 0.002 0.059* 0.65
Non_Irrig Yes CO 14.575 0.014 0.036 -0.004 -0.281 -2.284 0 0 0.063* 0.078 -0.002 0.032 0.33
Non_Irrig Yes MT -13.74 0.007 0.002 -0.003 -0.012 2.088 0 0 -0.014 -0.076 0.002 0.02 0.55
Non_Irrig Yes WY 9.693 -0.004 0.014* 0.008 0.036 -1.877 -0.000* 0 0.014 0.076 -0.002 0.013 0.8
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Table 5-12. Results of the nonlinear regression of the hay (excluding alfalfa) yield on PDSI and 
neighboring states using county-level data

 

Prod_Pract Irrigated State Constant Trend PDSI_prior PDSI_during PDSI_prior^2 PDSI_during^2 NB_PDSI Rsq
All No AL 1.893*** 0.000*** -0.067** 0.117*** 0.01 -0.006 0.033 0.76
All No AZ 4.268*** 0.164*** -0.026 -0.034 0.022 -0.007 -0.057 0.15
All No IL 2.309*** 0.944*** -0.013 0.072 0.012 -0.026 0.018 0.22
All No KS 1.738*** 0.072*** -0.062*** 0.060** 0.013** -0.003 0.068*** 0.63
All No KY 1.945*** 0.086*** -0.044* 0.033 0.019* -0.011 0.089* 0.55
All No MN 2.167*** 0.000*** -0.03 0.079** 0.024** -0.015 0.025 0.59
All No NE 1.100*** 0.000*** -0.023 0.045* 0.004 -0.003 0.016 0.7
All No NV 0.762*** 0.000*** 0.044 -0.187*** -0.005 0.005 0.214*** 0.79
All No NJ 2.239*** 0.004*** 0.01 -0.019 0.025 -0.021 0.052* 0.44
All No NM 1.955*** 0.085*** -0.113 0.168 0.013 -0.054* -0.091 0.29
All No NY 2.037*** 0.003*** -0.025 0.043* -0.004 0.003 -0.026 0.35
All No ND 1.380*** 0.037*** -0.062*** 0.172*** -0.001 -0.013** -0.03 0.81
All No OK 1.648*** 0.847*** -0.080*** 0.117*** 0.018*** -0.031*** 0.025 0.7
All No OR 2.042*** 0.032*** -0.019 -0.02 0.015* -0.013 0.065** 0.38
All No PA 2.016*** 0.355*** -0.041 0.045 -0.005 -0.019 0.046 0.43
All No SD 1.417*** 0.554*** -0.025 0.124*** 0.022* -0.026* -0.035 0.74
All No TN 2.032*** 0.266*** -0.03 0.065** 0.014* -0.011 0.018 0.46
All No UT 1.837*** 0.086*** -0.009 0.024 -0.002 -0.01 0.02 0.5
All No VA 1.951*** 0.073*** -0.132*** 0.225*** 0 0.009 -0.054 0.75
All No WA 2.449*** 0.457*** -0.013 -0.002 0.009 0.005 0.024 0.06
All No WV 1.601*** 0.214*** -0.037 0.04 0.034*** -0.018 0.029 0.44
All No WI 2.318*** 0.000*** 0.015 0.077 0.005 -0.021 0.035 0.51
All Yes AZ 2.944*** 0.059*** 0.197 -0.062 -0.003 0.047 -0.003 0.31
All Yes CO 1.582*** 0.280*** -0.014 0.027 0.001 -0.009 0.045 0.25
All Yes KS 2.260*** 0.416*** 0 0.001 -0.008 0.006 0.064 0.06
All Yes MT 1.346*** 0.000*** -0.032* 0.058*** 0.004 -0.005 0.01 0.55
All Yes NE 1.372*** 0.007*** 0.021 -0.001 0.019* -0.017 0.009 0.39
All Yes NV 1.145*** 0.000*** -0.01 -0.007 -0.002 -0.003 0.067** 0.77
All Yes NM 1.772*** 0.385*** -0.039 0.046 0.005 -0.002 -0.056 0.19
All Yes OR 1.606*** 0.000*** -0.029 -0.007 0.012 -0.011 0.096*** 0.7
All Yes UT 2.089*** 0.009*** -0.037 0.055 0.015* -0.008 0.018 0.57
All Yes WA 2.913*** 0.000*** -0.297** 0.263* 0.034 -0.032 0.001 0.54
All Yes WY 1.237*** 0.000*** -0.026 0.082*** 0 -0.008 -0.013 0.72
Irrig Yes CO 1.527*** 0.000*** 0.027 0.067** 0.004 -0.002 -0.011 0.7
Irrig Yes MT 1.619*** 0.001*** -0.038 0.069* 0.001 0.01 0 0.55
Irrig Yes WY 1.318*** 0.001*** -0.058** 0.068*** 0.012 -0.015** 0.033 0.63
Non_Irrig Yes CO 1.168*** 0.476*** -0.023 0.083 -0.011 -0.01 -0.04 0.15
Non_Irrig Yes MT 0.961*** 0.050*** -0.035 0.068 0.004 -0.006 0.013 0.39
Non_Irrig Yes WY 0.918*** 0.874*** -0.054** 0.127*** -0.009 -0.003 -0.024 0.73
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Table 5-13. Results of the stepwise regression of the alfalfa hay yield on monthly precipitation and temperature 

 

Prod_Pract State Constant Trend P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 P_max T_max Rsq
All AZ 7.196*** 0.035*** 0.017** 1 0 0.71
All CA 8.743*** 0.009** -0.037*** -0.005*** -0.036 0.096*** -0.098*** -0.063** 2 4 0.72
All CO 4.004*** 0.013*** 0.009*** 0.004* -0.004* 0.005*** 0.053** 0.067** -0.089** -0.056** 4 4 0.72
All ID 3.922*** 0.014*** 0.003*** -0.029* 1 1 0.65
All IL 4.575*** 0.004*** 0.004*** 0.044 -0.091*** 2 2 0.47
All IA 5.633*** -0.092** 0 1 0.13
All KS 1.587** 0.005*** 0.006*** 0.106** 2 1 0.38
All KY 1.033 -0.030*** 0.006*** 0.005*** 0.007*** 0.002* 0.063*** 0.208*** -0.183***-0.028* 4 4 0.73
All MI 3.098*** -0.029*** 0.006** 0.006** 0.004* -0.006** 4 0 0.56
All MN 2.761*** 0.006*** 0.005*** 0.032** 2 1 0.43
All MO 5.964*** 0.002** 0.003** 0.027** 0.064*** -0.065** -0.120*** 2 4 0.63
All MT 2.289*** -0.009*** 0.004** 0.001* 0.002** -0.041*** 0.032** 3 2 0.65
All NE 3.597*** 0.012*** 0.003*** 0.003*** 0.002** 0.003** -0.053*** 4 1 0.85
All NV 5.401*** 0.021*** 0.005** 0.006** -0.009*** -0.053*** -0.086*** 0.037* 3 3 0.7
All NM 6.306*** -0.006** -0.003** -0.081*** 2 1 0.35
All NY 3.152*** -0.006* -0.003** -0.070*** 1 1 0.39
All ND 0.22 0.016*** 0.006*** 0.004*** 0.004*** 0.004*** -0.022* 5 1 0.72
All OH 6.607*** -0.012** -0.004** -0.116*** 1 1 0.4
All OK 12.809*** 0.004** 0.003* 0.002* 0.003* -0.152***-0.241*** 4 2 0.73
All OR 1.801*** 0.006*** 0.001** 0.004*** 0.002* 0.001* 0.001*** 0.058*** 0.062*** 5 2 0.75
All PA 4.589*** -0.002*** -0.002** 0.002*** 0.003*** -0.001*** -0.001 -0.031*** -0.023* . -0.084*** 0.038** 6 4 0.77
All SD 1.701*** 0.016*** 0.007*** 0.004*** 0.003* 0.003*** 0.014*** -0.068*** 6 1 0.84
All TX 4.005*** 0.014** 0.007** 1 0 0.23
All UT 4.181*** 0.005*** 0.035* -0.052*** 1 2 0.47
All WI 1.622*** 0.006*** 0.003* 0.005* 3 0 0.27
Irrig CO 1.152 0.011*** 0.007** 0.007*** 0.010*** 0.193*** -0.097*** 0.059* -0.095***4 4 0.87
Irrig ID 2.994*** 0.009* 0.004*** 0.004** -0.004** 0.010*** 0.026* 0.110*** 4 2 0.86
Irrig MT 2.588*** 0.013*** 0.004** 0.008*** -0.052*** 0.076*** 2 2 0.82
Irrig NE 4.178*** 0.021*** 0 0 0.51
Non_Irrig CO 4.918*** -0.005** 0.007*** -0.187*** 2 1 0.77
Non_Irrig ID 4.529*** 0.005*** 0.001** -0.004*** 0.008*** -0.002*** -0.013* -0.036*** -0.228*** -0.020** 5 4 0.99
Non_Irrig MT 1.292*** 0.005** 0.013*** 0.004** 0.010*** 0.054*** -0.058*** -0.076*** 0.050*** 4 4 0.91
Non_Irrig NE 3.673*** 0.003*** 0.003** 0.005*** 0.037 -0.082*** -0.036*** 3 3 0.8
Total 10 4 5 8 11 10 9 3 9 17 3 4 1 9 2 4 5 8 10 4 8 6 3 3
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Table 5-14. Results of the regression of the alfalfa hay yield on precipitation and temperature prior to- 
and during the growing season 

 

Prod_Pract State Constant Trend P_prior P_during T_prior T_during Rsq
All AZ 9.497*** 0.032*** -0.001 -0.002 0.074 -0.113 0.7
All CA 5.574** 0.006 0 0 -0.164* 0.135 0.15
All CO 1.442 0.008 0.003* 0.001 0.072 0.061 0.26
All ID 4.078*** 0.014*** 0.001 0 0.036 -0.047 0.58
All IL 4.004** -0.006 0 0.001** 0.018 -0.051 0.19
All IA 4.817** 0.003 0 0 0.048 -0.08 0.05
All KS 1.835 -0.006 0.001 0.002** 0.056 0.021 0.26
All KY 2.149 -0.019* 0 0.002*** -0.005 -0.003 0.27
All MI 5.289*** -0.024*** -0.002 0.003** 0.025 -0.148 0.45
All MN 2.973** -0.006 0.001 0.002*** 0.025 -0.044 0.24
All MO 4.743*** 0 0 0.001* 0.018 -0.115 0.22
All MT 1.419* -0.010*** 0.001 0.002*** 0.027 0.011 0.43
All NE 2.731*** 0.013*** 0.001* 0.002*** 0 -0.033 0.76
All NV 3.223** 0.015*** 0.001 -0.001 0.007 0.043 0.37
All NM 5.364*** 0.001 -0.001 0 -0.072* 0.017 0.15
All NY 3.591*** -0.005 0 0 -0.067** -0.056 0.28
All ND 0.044 -0.005 0.003*** 0.004*** -0.012 0.007 0.57
All OH 6.881*** -0.009 -0.001 0 -0.019 -0.164* 0.39
All OK 10.012*** -0.012** 0.002*** 0.002*** -0.008 -0.350*** 0.74
All OR 1.641** 0.010*** 0.001*** 0.002*** 0.03 0.111** 0.61
All PA 5.269*** 0 0 0 -0.029 -0.150** 0.28
All SD 1.35 -0.005 0.003** 0.004*** 0.031 -0.06 0.7
All TX 10.457** 0.027** 0.001 -0.002 0.018 -0.255 0.23
All UT 4.405*** 0.007** 0.001 0.001 0.016 -0.054 0.38
All WI 1.069 -0.004 0.001 0.003*** -0.002 -0.003 0.31
Irrig CO -2.073 -0.003 0.006** 0.003*? -0.045 0.269* 0.36
Irrig ID 3.976*** 0.021** 0.001 0.001 0.001 0.002 0.44
Irrig MT 0.868 0.015*** 0.003** 0.003** 0.043 0.071 0.54
Irrig NE 3.329*** 0.020*** 0.001 0 0.011 0.035 0.54
Non_Irrig CO 0.527 -0.014 0.004* 0.002 -0.056 -0.025 0.63
Non_Irrig ID 1.531 0 0.001* 0.002** -0.081 -0.069 0.69
Non_Irrig MT -0.273 -0.006 0.004*** 0.003** 0.044 0.005 0.54
Non_Irrig NE 3.450** -0.001 0.002* 0.002** 0.032 -0.096 0.61
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Table 5-15. Results of the stepwise regression of the alfalfa hay yield on monthly PDSI 

 

  

Prod_Pract State Constant Trend PDSI1 PDSI2 PDSI3 PDSI4 PDSI5 PDSI6 PDSI7 PDSI8 PDSI9 PDSI10 PDSI11 PDSI12 PDSI_max Rsq
All AZ 7.492*** 0.023*** -0.068** 1 0.73
All CA 6.795*** 0 0
All CO 3.231*** 0.015*** 0.066*** 1 0.28
All ID 3.808*** 0.012*** 0.057 0.050* 0.060* -0.132*** 4 0.69
All IL 3.761*** -0.101*** 0.132*** 2 0.31
All IA 3.612*** 0 0
All KS 3.814*** 0.120*** 1 0.32
All KY 3.631*** -0.019*** -0.109*** 0.198*** 2 0.42
All MI 3.764*** -0.023*** 0 0.27
All MN 3.374*** -0.008*? 0.119*** 1 0.36
All MO 2.830*** 0 0
All MT 2.321*** -0.007*** 0.099*** -0.044* -0.042** 3 0.45
All NE 3.305*** 0.012*** -0.218*** 0.144*** 0.128** 3 0.79
All NV 4.002*** 0.017*** 0 0.35
All NM 5.092*** -0.028** 1 0.12
All NY 2.564*** -0.038** 1 0.17
All ND 1.923*** -0.010** -0.220*** 0.172** 0.197*** 3 0.75
All OH 3.690*** -0.014** 0 0.17
All OK 3.606*** -0.018*** -0.136** 0.271*** 2 0.62
All OR 4.111*** 0.011*** 0.033** 1 0.41
All PA 2.898*** -0.063** 0.172*** -0.069* -0.105** 0.074 5 0.53
All SD 2.113*** -0.091*** 0.199*** 2 0.74
All TX 4.287*** 0.015** 0 0.12
All UT 3.900*** 0.009*** 0.202* 0.077*** 0.163** -0.409*** 4 0.54
All WI 2.779*** 0.118*** 1 0.25
Irrig CO 3.867*** 0.094*** 1 0.34
Irrig ID 4.474*** 0.021*** 0.048*** 1 0.54
Irrig MT 2.888*** 0.020*** 0.050** 1 0.48
Irrig NE 4.178*** 0.021*** 0 0.51
Non_Irrig CO 1.235*** 0.109*** 1 0.58
Non_Irrig ID 1.653*** 0.088*** 1 0.53
Non_Irrig MT 1.231*** 0.121*** -0.043* 2 0.6
Non_Irrig NE 3.049*** -0.138** 0.095* 0.116*** 3 0.61
Total 4 1 3 4 4 0 10 5 5 5 4 2
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Table 5-16. Results of the regression of the alfalfa hay yield on PDSI prior to- and during the growing 
season 

 

Prod_Pract State Constant Trend PDSI_prior PDSI_during Rsq
All AZ 7.481*** 0.024*** -0.076* 0.01 0.72
All CA 6.666*** 0.007 0.041 -0.017 0.06
All CO 3.242*** 0.015*** 0.006 0.062 0.26
All ID 3.737*** 0.015*** -0.003 0.034* 0.56
All IL 3.860*** -0.005 -0.108** 0.141** 0.19
All IA 3.517*** 0.005 -0.051 0.031 0.04
All KS 3.809*** -0.001 -0.046 0.155** 0.27
All KY 3.465*** -0.009 -0.091* 0.137** 0.18
All MI 3.863*** -0.028*** -0.096 0.133* 0.34
All MN 3.365*** -0.008 -0.014 0.135** 0.32
All MO 2.844*** 0 -0.098** 0.097** 0.18
All MT 2.311*** -0.007*** -0.044** 0.067*** 0.33
All NE 3.283*** 0.013*** -0.105*** 0.169*** 0.73
All NV 3.993*** 0.017*** -0.003 0.014 0.35
All NM 5.160*** -0.003 -0.03 -0.009 0.13
All NY 2.702*** -0.007* -0.028 0.016 0.15
All ND 1.938*** -0.010** -0.102*** 0.254*** 0.67
All OH 3.646*** -0.013* -0.076 0.058 0.22
All OK 3.484*** -0.012* -0.108** 0.234*** 0.54
All OR 4.098*** 0.012*** 0.015 0.021 0.41
All PA 3.007*** -0.004 -0.050* 0.089*** 0.26
All SD 2.175*** -0.003 -0.093** 0.223*** 0.68
All TX 4.288*** 0.015** -0.033 0.055 0.14
All UT 3.924*** 0.008** -0.057 0.095*** 0.36
All WI 2.892*** -0.006 -0.001 0.159** 0.26
Irrig CO 3.680*** 0.014 0.049 0.066 0.36
Irrig ID 4.468*** 0.021*** 0.021 0.029 0.52
Irrig MT 2.886*** 0.020*** -0.01 0.054 0.43
Irrig NE 4.185*** 0.021*** -0.036 0.033 0.54
Non_Irrig CO 1.377*** -0.011 -0.025 0.119*** 0.58
Non_Irrig ID 1.734*** -0.008 -0.042 0.120*** 0.52
Non_Irrig MT 1.239*** 0 -0.048 0.131*** 0.49
Non_Irrig NE 3.060*** -0.001 -0.120*** 0.200*** 0.56
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Table 5-17. Results of the nonlinear regression of the alfalfa hay yield on precipitation and temperature and neighboring states 

 

Prod_Pract State Constant Trend P_prior P_during T_prior T_during P_prior^2 P_during^2 T_prior^2 T_during^2 NB_P NB_T Rsq
All AZ -32.92 0.037*** 0.003 0.003 1.36 2.874 0 0 -0.065 -0.065 0.004 0.099** 0.8
All CA 25.953 0.003 0.002 -0.001 2.671*** -3.281 0 0 -0.142*** 0.085 0.001 -0.053 0.58
All CO -17.48 0.008 0.060*** -0.009 -0.018 2.232 -0.000*** 0 0.033 -0.075 0.003 -0.038 0.47
All ID -7.895 0.017*** -0.001 -0.009 0.002 2.020* 0 0 -0.018 -0.079* -0.001 -0.003 0.69
All IL 12.43 -0.002 -0.005 0.012*** 0.26 -1.212 0 -0.000** -0.043* 0.031 0.001 0.015 0.49
All IA -13.36 0.001 0.002 0.017*** 0.025 1.196 0 -0.000*** 0.008 -0.033 0 0.036 0.69
All KS 29.118 -0.012 -0.004 0.018** -1.037* -2.851 0 -0.000** 0.126* 0.07 0.005 0.048 0.43
All KY -85.14 -0.019* 0.001 0.008 0.01 8.281 0 0 -0.001 -0.2 -0.002 -0.005 0.35
All MI -5.146 -0.022*** 0.017 0.022 0.036 0.1 0 0 0.004 -0.007 -0.003 0.054 0.53
All MN -11.26 -0.009 -0.004 0.015 0.105 1.412 0 0 0.009 -0.047 -0.001 0.034 0.35
All MO -31.21 0.001 0.002 0.009** 0.195 3.006 0 -0.000* -0.017 -0.075 0 -0.003 0.43
All MT -1.552 -0.011*** -0.008 0 -0.037 0.604 0 0 -0.023 -0.022 0.002 0.006 0.52
All NE -25.35 0.016*** 0.007 -0.001 0.077 3.159 0 0 -0.035* -0.09 -0.001 0.021 0.83
All NV -39.47* 0.012* -0.005 -0.013 -0.118 5.508* 0 0 0.022 -0.166* 0 -0.049 0.52
All NM 4.261 0.001 -0.006* 0 0.115 0.177 0 0 -0.015 -0.005 0 -0.025 0.27
All NY -51.19*** -0.002 -0.003 0.001 -0.057* 7.004*** 0 0 0.009 -0.226*** -0.003** 0.035 0.59
All ND -2.058 -0.007 0.001 0.016** 0.11 -0.024 0 -0.000* 0.012 0.001 0.002 0.05 0.69
All OH -22.37 -0.01 0.005 0.010* 0.229 2.426 0 -0.000* -0.044 -0.069 -0.002 0.042 0.56
All OK -50.64 -0.007 0.004 0.002 -0.229 4.713 0 0 0.015 -0.108 0.001 0.111** 0.83
All OR -12.54 0.015*** -0.001 0.005 -0.017 2.142 0 0 0.006 -0.074 0 0.031 0.68
All PA -14.86 -0.003 0.004 0.006** 0.005 1.782 0 0.000** -0.014 -0.055 0 0.038 0.49
All SD -8.677 -0.007 -0.001 0.012 0.059 0.925 0 0 0.011 -0.029 0.001 0.024 0.74
All TX -124.2 0.032** 0.002 -0.01 2.001 9.857 0 0 -0.08 -0.205 0.001 -0.068 0.32
All UT 12.438 0.008** 0.010** 0.009 -0.062 -1.174 -0.000* 0 0.028 0.034 -0.004 -0.039* 0.53
All WI -6.856 -0.006 -0.001 0.013 0.104 0.684 0 0 0.02 -0.023 0.002 0.04 0.49
Irrig CO -39.93 -0.007 0.027 0.004 -0.245 5.218 0 0 0.174 -0.17 0.006* -0.045 0.65
Irrig ID -5.268 0.020* 0.003 -0.001 0.041 1.582 0 0 0.019 -0.063 0.002 -0.091 0.65
Irrig MT -23.74* 0.014** -0.021 -0.008 -0.077 4.209* 0.000* 0 -0.043* -0.153* 0.003 0.01 0.71
Irrig NE 13.857 0.025*** -0.007 0.013* 0.032 -1.424 0 -0.000* -0.016 0.04 -0.001 0.048 0.75
Non_Irrig CO 21.583 -0.014 0.032 0.004 -0.068 -3.34 0 0 -0.042 0.112 0.005* 0.036 0.74
Non_Irrig ID -12.4 -0.003 0.004 -0.017 -0.045 2.259 0 0 0.062 -0.088 0.002 0.009 0.81
Non_Irrig MT -21.75* -0.008* -0.024** -0.017** -0.121* 3.922** 0.000** 0.000** -0.060*** -0.145** 0.005** 0.029 0.83
Non_Irrig NE -3.253 0.001 0.002 0.013 0.023 0.371 0 0 0.005 -0.014 0.001 0.033 0.71



120 
 

Table 5-18. Results of the nonlinear regression of the alfalfa hay yield on PDSI and neighboring states 

 

State Constant Trend P P(1) P(2) P(3) P(4) P(5) P(6) P(7) P(8) P(9) P(10) P(11) T T(1) T(2) T(3) T(4) T(5) T(6) T(7) T(8) T(9) T(10) T(11) P_max T_max Rsq
AZ 1.438*** 0.001*** -0.001** 0.010*** 0.006** 1 2 0.3
AR 1.076*** 0.000** 0.002** 0 1 0.05
CA 1.892*** 0.001*** -0.008*** 0 1 0.16
CO 2.021*** 0.002*** -0.001* -0.001** -0.002** -0.002***-0.002** -0.002***-0.002***-0.002***-0.002** -0.005*** 9 1 0.54
ID 1.506*** 0.001*** -0.008** -0.012*** 0 2 0.32
IL 1.459*** 0.001*** 0.004*** 0 1 0.12
IN 1.681*** 0.002*** -0.001** -0.002***-0.001** -0.001** 0.013*** 4 1 0.27
IA 2.499*** 0.001*** -0.001* -0.001** -0.001* -0.001** -0.001***-0.001* -0.011** -0.010* -0.012** -0.017*** -0.013*** -0.013*** -0.013*** 6 7 0.2
KS 2.331*** 0.001*** -0.001** -0.001* -0.001** -0.001* -0.001** -0.001***-0.001***-0.001***-0.001* -0.001* -0.001** -0.011** -0.009* -0.008* -0.012*** 11 4 0.23
KY 1.629*** -0.000** -0.000* -0.001** 2 0 0.06
MI 1.830*** 0.001*** -0.001* -0.001* -0.001* -0.001* -0.001* -0.001** -0.001*** -0.012*** 7 1 0.29
MN 2.533*** -0.000** -0.001** -0.001***-0.001* -0.001***-0.001***-0.001** -0.001** -0.001** -0.001** -0.014***-0.014*** -0.009** -0.012** -0.011** -0.008* -0.008*? -0.010** 9 8 0.26
MO 1.261*** -0.001*** 0.005** 0.008*** 0 2 0.21
MT 1.780*** 0.000** -0.001 -0.002** -0.002***-0.002***-0.002***-0.002*** -0.007*** 6 1 0.14
NE 2.302*** 0.001*** -0.001***-0.001***-0.002***-0.002***-0.002***-0.002***-0.002***-0.002***-0.002***-0.002***-0.002*** -0.011*** -0.009** -0.013*** 11 3 0.38
NV 1.711*** 0.001*** 0 0 0.15
NM 1.843*** 0.001*** -0.001** -0.001** -0.001** 0.010*** 0.016*** 3 2 0.26
NY 1.775*** 0.000*** -0.001* -0.001* 2 0 0.04
ND 1.015*** -0.000*** -0.005*** 0.004*** 0.010*** 0 3 0.08
OH 1.551*** -0.001*** 0.020*** 0.003 0.016*** 0 3 0.07
OK 1.745*** -0.001*** -0.001** -0.000* -0.001*** -0.001***-0.001***-0.001** -0.000* 0.010*** . 7 1 0.24
OR 1.722*** 0.002*** -0.007* -0.013*** 0 2 0.42
PA 2.061*** 0.000*** -0.001** 1 0 0.04
SD 1.044*** 0.001*** 0.002* 0 1 0.08
TX 1.423*** -0.000** -0.001* -0.001** -0.001** . -0.001** -0.001** -0.001** 0.014*** 0.009** 6 2 0.16
UT 1.376*** 0.001*** -0.003** 0 1 0.27
WA 2.633*** 0.002*** -0.022***-0.019*** -0.022***-0.022*** -0.017** -0.020*** 0 6 0.35
WI 2.038*** -0.001** -0.001*** -0.001* -0.002***-0.002***-0.001** -0.014*** 6 1 0.14
WY 1.713*** 0.001*** -0.002*** -0.001** -0.001* -0.002** -0.001* -0.002** 6 0 0.16

Total 0 2 5 7 7 9 10 13 12 11 11 10 6 6 6 3 4 4 4 8 4 4 5 3
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Chapter 6 Targeting PRF to Viable Regions 
 

At present, the PRF plan is offered across a geography that largely covers the entire coterminous 
United States.  Not all areas where the PRF plan is offered are suitable for forage production.  
We have investigated two distinct measures of the suitability of land for the production of forage 
with the intent of formulating recommendations for restricting the PRF offering to areas that 
have the potential for viable forage and hay production.   

The National Resources Inventory (NRI) is a periodic survey that catalogs the stock of US 
natural resources, including land capability and usage.  The survey includes a measure of the 
suitability of non-irrigated soils for most kinds of field crops—the land capability classification 
(LCC).  The Natural Resources Conservation Service (NRCS) has constructed quantitative 
measures of land characteristics to formulate the LCC system. Soils are grouped according to 
their limitations, their response to management, and the potential for damage if the land is 
cropped.  The LCC ranges from scores of 1 to 8, with 1 being of the highest quality for 
agronomic uses and 8 corresponding to the lowest quality.  An LCC of 1 corresponds to soils that 
have few limitations that restrict their use.  The lowest quality of land has an LCC score of 8.  
This corresponds to “soils and miscellaneous areas that have limitations that preclude 
commercial plant production and that restrict their use to recreational purposes, wildlife habitat, 
watershed, or esthetic purposes.”    

The LCC system also has a set of four subclasses that correspond to additional hazards that affect 
their use.  We believe that subclass C characterizes hazards that are likely to limit the suitability 
of the land for cultivation or forage production.  Subclass C consists of soils for which the 
climate (based on temperature or lack of moisture) is the major limitation affecting their use.  

We used the 2015 NRI survey (the most recent available) to consider the suitability of individual 
counties for inclusion in the PRF plan.  The NRI data are not geographically identifiable at a 
resolution any finer than the county level due to non-disclosure considerations and the sampling 
procedures used in collecting the data.   

We considered various aggregations of land area in each county according to the LCC metrics.  
Figure 6-1 illustrates the proportions of land area that falls into LCC class 8 and/or subclass C 
(which we denote as LCC 8/C).  This represents the land least suitable for cultivation because of 
soil and climate conditions.  As would be expected, the lowest quality of land is generally in the 
western states.  Some coastal regions also have land that is not designated as being useful for 
cultivation. 

We investigated the extent of the usage of land area in the production of hay and forage.  
Specifically, we considered the proportion of total area in a county, as reported in the 2017 
Agricultural Census, that was harvested for forage, defined as “all hay and haylage, grass silage, 
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and green-chop,” (Agricultural Census Variable No. y17-M159).  This was converted to a 
proportion of total area in a county by using the proportions of cropland harvested and land in 
farms as a proportion of total land area. We considered three different thresholds for the 
proportion of land in LCC 8 or C—counties with more than 10%, 25%, and 50% of land so 
designated.  We identified such counties and examined the proportion of land in each county that 
was harvested for forage.   

Figures 6-2 – 6-4 illustrate the proportion of land in each category of LCC rating 8/C used in 
producing forage.  In each figure, the shorter bar reflects the proportion of LCC 8/U land 
exceeding each threshold in a county used in forage production.  It is notable that counties 
having 10% or 25% of land area in LCC 8/C still have notable acreage devoted to the production 
of forage.  In the case of those counties having more than 50% of land area in LCC 8/C, less than 
1% of land area is harvested for forage or hay.   

Figures 6-5 – 6-7 identify the counties exceeding each threshold (10%, 25%, and 50%) of land in 
LCC 8/U.  We believe that the LCC measure of land quality could be used to limit the offering of 
the PRF plan in counties having a large proportion of land that is unsuitable for forage 
production.  If RMA intends to limit entire counties, we would recommend eliminating those 
counties with 50% or more land area that falls into the lowest capability classes, either because 
of its suitability for cultivation or its unfavorable weather conditions.  Our analysis demonstrates 
that such counties generally do not have very much land area (only about 0.95%) involved in 
forage production.  This would serve to drop areas with unfavorable growing conditions and 
would have a minimal impact on forage producers that may have PRF coverage.   

An important limitation of such a proposal lies in its relative lack of resolution.  That is, entire 
counties would be eliminated based on average growing conditions.  To the extent that land 
quality is highly heterogeneous in such counties, this would have the potential of eliminating 
small portions of land that could be amenable to forage production.  We, therefore, considered an 
alternative measure of land viability for forage production.  The US Forest Service has calculated 
an annual measure (1984-2018) of rangeland productivity.  Rangeland productivity, in terms of 
rangeland vegetation in pounds per acre, is calculated for the non-forest domain of the 
coterminous US using the Normalized Difference Vegetation Index (NDVI) from the Thematic 
Mapper Suite at the 250 m2 level of resolution.11 

We collected the average level of rangeland production over the 1984-2018 period.  Figure 6-8 
illustrates the data at the 250 m2 level of resolution.  These data were reprojected on the wgs84 
latitude and longitude coordinates and were aggregated by a factor of 40-times to allow the data 
to be managed in concert with the NOAA NCPC gridded data.  The reprojected and aggregated 
data are presented in Figure 6-9.  The data were then put on a latitude/longitude grid that was 
considerably finer than the NOAA NCPC precipitation data and nearest-neighbor averaging 

 
11 The USFS data can be downloaded from https://data.fs.usda.gov/geodata/rastergateway/rangelands/index.php. 

https://data.fs.usda.gov/geodata/rastergateway/rangelands/index.php
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further aggregated the data to match the grid points of the NCPC grid.  Neighbors were defined 
as all points within a 15 km radius of the NCPC grid centroid.   

Figure 6-10 illustrates average precipitation (from 1948-2017) and rangeland production.  The 
figure demonstrates a strong relationship between precipitation and rangeland production.  
Figure 6-11 presents county-level aggregates of rangeland production.  When compared to the 
LCC 8/U maps, very similar patterns of land quality and forage production are implied.  We do 
not recommend using such a level of aggregation in light of the vast loss in resolution.   

We then considered benchmarks defined by the distribution of rangeland output across the entire 
non-forested US.  We considered the elimination of grid points from the PRF plan that 
alternatively had rangeland production that fell below the tenth, fifth, and first percentiles.  
Figures 6-12 – 6-14 illustrate the grid points that would be eliminated from the plan under each 
threshold.  If a tenth percentile was to be used as a threshold, 970 of the 13,626 grid points would 
be eliminated.  If the threshold is dropped to the fifth percentile, 484 grid points would be 
eliminated.  Dropping the threshold to the first percentile leads to 96 grid points be dropped from 
the program.   

PRF Viable Regions Recommendations 
 
If RMA prefers to eliminate whole counties from the program based on the suitability of soil and 
climate conditions for forage production, we recommend consideration of the land capability 
classification.  Specifically, we recommend dropping counties having more than 50% of the total 
area that falls into land capability class 8 and/or subclass C.  Such land has been designated by 
NRCS to be unsuitable for cultivation.  A review of the 2017 census indicates that only a very 
small proportion of land in such counties is used to harvest forage or hay.  This recommendation 
comes with two caveats.  First, eliminating entire counties may not be appropriate in areas where 
land quality is very heterogeneous.  This reflects the lack of resolution in a county aggregate.  
Second, as is likely to be the case with any threshold criteria, the choice of 50% is admittedly 
arbitrary but is justified in light of the very limited acreage devoted to hay in forage in such 
areas.  Appendix Table 2 presents the relevant FIPS codes. 
 
If RMA is willing to consider a higher degree of resolution and instead eliminate individual grid 
points rather than entire counties, we believe that the USFS measures of forage production 
provide an ideal metric for selecting areas to drop from coverage.  We have obtained a direct 
measure of average forage production for each grid point and have also demonstrated the strong 
correspondence between precipitation and forage production.  Again, one can infer that, 
depending on the threshold selected, this would impact few producers of forage and rangeland.  
This is again demonstrated by the fact that forage production is low, both in terms of output and 
acreage, in such areas. Once again, the threshold of rangeland production that defines dropping a 



124 
 

grid point from the PRF plan is arbitrary but is directly justified by the very low level of forage 
production and concomitantly low allocation of acreage to forage in such areas.  
 
In summary, we recommend that RMA drop any grid point and its relevant 0.25-degree 
surrounding area that corresponds to the lowest 1-percentile of the distribution of forage 
production from eligibility for PRF coverage.  This would eliminate 96 of the 13,626 grid points 
currently in the program.  We have outlined alternative thresholds that could be used to eliminate 
marginal forage producing areas and believe that these may form the basis for future program 
revisions.  A less drastic step would be to allow insurance in these areas, but with a reduced CBV 
and to allow irrigated acres to insure.  We note that we also considered eliminating intervals with 
extremely high rates.  This is an actuarial approach, but we believe that it is also a practical 
approach to the problem.  
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Figure 6-1: Land in LCC 8 and/or Subclass C 
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Figure 6-2: Forage and Hay Production in Counties  

With LCC 8/C > 10% of Land Area 
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Figure 6-3: Forage and Hay Production in Counties  

With LCC 8/C > 25% of Land Area 
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Figure 6-4: Forage and Hay Production in Counties  

With LCC 8/C > 50% of Land Area 
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Figure 6-5: Counties with LCC 8/C > 10% of Land Area 
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Figure 6-6: Counties with LCC 8/C > 25% of Land Area 
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Figure 6-7: Counties with LCC 8/C > 50% of Land Area 
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Figure 6-8: Raw USFS Rangeland Average (1984-2018) Production 
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Figure 6-9: Aggregated and Reprojected USFS Rangeland  

Average (1984-2018) Production 
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Figure 6-10: NCPC Average Precipitation and Forage Production 
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Figure 6-11: USFS Rangeland Average (1984-2018) Production 

Aggregated to County Averages 
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Figure 6- 12: Grid Points Dropped from PRF  

Based on the 10th Percentile 
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Figure 6-13: Grid Points Dropped from PRF  

Based on the 5th Percentile 

 

  



138 
 

Figure 6-14: Grid Points Dropped from PRF  

Based on the 1st Percentile 

 

 

An alternative approach based on the percent of annual rainfall 
 
One possible approach to reducing irrelevant intervals is to simply eliminate grid intervals that 
contribute a small percentage of the annual rainfall.  The premise being that intervals that 
contribute a small percentage of annual rainfall have less to do with producer risk than periods of 
more significant rainfall.  We evaluated this approach and the maps in Figures 6-15 – 6-26 below 
reflect the analysis of the following two conditions: 

1. if the month’s expected rainfall is less than 1/12 of the average total annual rainfall then 
the month and any associated interval is removed 

2. if the interval’s expected rainfall is less than 1/12 of the average total annual rainfall then 
the interval is removed. 
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Two maps, one for each of the above conditions, are generated for each two-month interval.  
Grids in red are grids that would be removed if the respective condition is imposed as they fail 
the condition.  Each map indicates the number of grids that would be removed.  For grids in 
yellow, the month’s (interval’s) expected rainfall is greater than 1/12 but less than 1/6 of the 
average total annual rainfall.  For grids in green, the month’s (interval’s) expected rainfall is 
greater than 1/6 of the average total annual rainfall.   

The first condition would result in a large number of grids being removed for almost all intervals 
and therefore is not recommended.  We also examined some other variants but reached the 
conclusion this approach is highly sensitive to the specific parameters chosen.  
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Figure 6-15 
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Figure 6-16 
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Figure 6-17 
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Figure 6-19 



144 
 

 

 

Figure 6-20 
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Figure 6-21 
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Figure 6-22 
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Figure 6-23 
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Figure 6-24 



149 
 

 

 

Figure 6-25 
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Figure 6-26 
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Chapter 7 Improving the PRF loss function and weather variables 
 

PRF is an index product that inherently has basis risk.  That is the loss function is imperfectly 
correlated with actual on-farm losses when forage is reduced.  Basis risk exists because 
rainfall does not explain all causes of forage and hay losses. Another form of basis risk arises 
due to the grid measure not matching the rainfall at the farm.  However, using the grid 
appears the smallest feasible area.  So we make no recommendations in this area.       

Data for this part of the analysis consists of alfalfa hay prices ($/ton) from NASS, 
precipitation (mm), temperature (degree C), and Palmer Drought Severity Index (PDSI) 
(generally between -2 and 2) data.  Data are observed monthly at the state level.   

 

The relationship of forage losses with replacement value 
 

Data for this part of the analysis consists of alfalfa hay prices ($/ton) from NASS, 
precipitation (mm), temperature (degree C), and Palmer Drought Severity Index (PDSI) 
(generally between -2 and 2) data.  Data are observed monthly at the state level.   

The dependent variable for this analysis consists of alfalfa hay price and other (excluding 
alfalfa) hay prices.  The discussion here is for the case of other (excluding alfalfa) hay price.  
Findings are similar for the case of the alfalfa hay price.  The independent variables are 
divided into two sets.  The first set includes precipitation and temperature while the second 
set consists of PDSI.  A trend variable is also included in both sets.  Real hay prices were 
derived by deflating the nominal hay prices by the farm level implicit price deflator obtained 
from the U.S. Bureau of Economic Analysis (FRED (a), 2019).  The GDP implicit price 
deflator obtained from the U.S. Bureau of Economic Analysis (FRED (b), 2019) was also 
investigated.  The results were similar to the case when the farm level implicit price deflator 
was used. 

Several issues were investigated: 

1. What is the lag length of the monthly precipitation, temperature, and PDSI variables on 
hay prices? 

2. What is the effect of the neighboring states' aggregate precipitation, temperature, and 
PDSI variables on the hay prices of a target state? 

3. Is there a nonlinear (quadratic) relationship between precipitation, temperature, and PDSI 
and hay prices? 

The results for each of these issues are discussed below. 
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1. What is the lag length of the monthly precipitation, temperature, and PDSI variables on 
hay prices? 

Table 7-1 presents the results of the stepwise regression of the hay price on current and 
eleven lagged values of precipitation and temperature variables.  Table 7-2 presents the 
results of the stepwise regression of the hay price on current and eleven lagged values of 
PDSI variables. 

Some general notation description for all the tables is provided here again.  P indicates 
precipitation, T indicates temperature, and PDSI indicates the Palmer Drought Severity 
Index.  The numbers in parenthesis following P, T, and PDSI indicate lags, for example, P(3) 
indicates the value of precipitation lagged by three months.  The numbers without parenthesis 
following P, T, and PDSI indicate the calendar month, for example, P3 indicates the value of 
precipitation for March.  X^2 indicates the square term of the variable X while NB_X 
indicates the aggregate value from the neighboring states for the variable X. 

Results of Table 7-1 show that the maximum number of significant lags for precipitation 
varies from state to state from a low of zero to a high of eleven lags.  For temperature, the 
number of significant lags varies from zero to eight.  Additionally, all eleven lags for both 
precipitation and temperature have a significant effect on hay prices for at least one state.  
Note that current precipitation has a significant effect on hay price only for NM out of the 29 
states while current temperature has a significant effect in four states. 

Results of Table 7-2 show that the maximum number of significant lags for PDSI varies from 
zero to three months.  Additionally, all twelve lags have a significant effect on hay prices for 
at least one state.  Results of Table 7-1 show that precipitation, temperature, and a trend 
variable explain from a low of 2% for the state of AR to a high of 65% for OR of the 
variation in hay prices.  Results of Table 7-2 show PDSI explains from a low of 1% for the 
state of KS to a high of 65% for OR of the variation in hay prices.  Comparing the R-squares 
from Table 7-1 and 7-2 indicates that PDSI explains the variation in hay prices better than 
precipitation and temperature in 15 of 29 states. 

2. What is the effect of the neighboring states' aggregate precipitation, temperature, and 
PDSI variables on the hay prices of a target state? 

3. Is there a nonlinear (quadratic) relationship between precipitation, temperature, and PDSI 
and hay prices? 

Results of the investigation for the two remaining issues are reported in Table 7-3 for 
temperature and precipitation and Table 7-4 for PDSI, respectively. 

Results of Table 7-3 highlight several findings.  First, for 16 of the 29 states that show a 
significant relationship between hay prices and precipitation exists, the relationship is 
nonlinear (quadratic).  Further, the nonlinear relationship between hay prices and 
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precipitation is of the form that hay prices are high for low levels of precipitation, prices 
decrease as precipitation increases, reaches a minimum for a certain precipitation level, and 
start rising again as precipitation level continues to increase.  In other words, hay prices are 
lower within a certain optimal range of precipitation.  Too little or too much precipitation 
would cause hay prices to increase.  The exceptions to this form of relationship are the states 
of NV, NY, OH, and OR.  This nonlinear relationship between hay prices and precipitation 
justifies the adjustment of CBVs for low levels of precipitation in such a way to allow for 
accelerated higher levels of indemnity for low levels of precipitation. 

Second, a significant relationship between hay prices and temperature exists for all states, 
and for sixteen of the 29 states the relationship is nonlinear (quadratic).  The direction of the 
relationship between hay prices and the temperature is not consistent across the 29 states. 

Third, for 13 states in the case of precipitation and 13 states in the case of temperature, the 
aggregate precipitation and temperature of the neighboring states affect the hay prices of the 
target state. 

Results of Table 7-4 show that for 22 of the 29 states a significant relationship exists between 
hay prices and PDSI, and for seventeen of these states, the relationship is nonlinear 
(quadratic).  Further, similar to precipitation, for the majority of the states (ten out of 
seventeen), the nonlinear relationship between hay prices and PDSI is of the form that hay 
prices are high for low levels of PDSI, prices decrease as PDSI increases, reach a minimum 
for a certain PDSI level, and start rising again as PDSI level continues to increase.   

 

Assessment of the relationship between alfalfa hay prices and yields and weather 
variables 

 

The dependent variable for this part of the analysis consists of alfalfa hay prices and alfalfa 
hay yields. Results are presented in Tables 7.5 through 7.8.  Findings are similar to the 
previously discussed findings for the case of the other (excluding alfalfa) hay price and other 
(excluding alfalfa) hay yield.   

Chapter 7 References 
FRED (a), 2019. https://fred.stlouisfed.org/series/A372RD3Q086SBEA. Accessed February 
2020. 

FRED (b), 2019. https://fred.stlouisfed.org/series/GDPDEF. Accessed February 2020. 

 

https://fred.stlouisfed.org/series/A372RD3Q086SBEA
https://fred.stlouisfed.org/series/GDPDEF
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Table 7-1. Results of the stepwise regression of the hay (excluding alfalfa) price on current and eleven lagged values of precipitation and temperature 

 

  

State Constant Trend P P(1) P(2) P(3) P(4) P(5) P(6) P(7) P(8) P(9) P(10) P(11) T T(1) T(2) T(3) T(4) T(5) T(6) T(7) T(8) T(9) T(10) T(11) P_max T_max Rsq
AZ 1.211*** 0.002*** 0.001** -0.003** 1 1 0.57
AR 1.016*** 0.002* 0 1 0.02
CA 1.495*** 0.001*** -0.000* -0.010*** 1 1 0.2
CO 2.090*** 0.002*** -0.002** -0.002***-0.002***-0.002** -0.002***-0.002***-0.003***-0.003*** -0.005** 8 1 0.45
ID 1.125*** 0.002*** -0.005* -0.007** 0 2 0.45
IL 1.177*** 0.000*** -0.000* 0.003*** 1 1 0.06
IN 1.734*** 0.001*** -0.001** -0.001***-0.001** -0.001* -0.012*** 4 1 0.24
IA 1.533*** 0.000*** -0.000* -0.000* -0.001** -0.001** -0.010*** -0.009*** -0.007** -0.006** -0.008*** 4 5 0.16
KS 1.105*** -0.000** 1 0 0.01
KY 1.410*** -0.001*** 0 0 0.15
MI 1.428*** 0.001*** -0.001* -0.001** -0.001* -0.001** -0.001*** -0.010*** 5 1 0.3
MN 1.890*** -0.001** -0.001* -0.001** -0.001** -0.001***-0.001***-0.001** -0.001** -0.001** -0.013***-0.008** -0.007** -0.008** -0.007* -0.008** -0.008** -0.007* 9 8 0.23
MO 1.292*** -0.001*** 0 0 0.29
MT 1.564*** 0.000*** -0.001* -0.001** -0.001** -0.002***-0.002***-0.001** -0.006*** 6 1 0.17
NE 1.846*** 0.000*** -0.001** -0.001** -0.001***-0.001***-0.002***-0.002***-0.002***-0.002***-0.002***-0.002***-0.002*** -0.008*** -0.010*** 11 2 0.33
NV 1.405*** 0.001*** 0.003* 0 1 0.29
NM 1.387*** 0.001*** -0.001** -0.001** -0.001** 0.011** 0.016*** 3 2 0.26
NY 1.523*** 0.001*** -0.001** -0.001* 2 0 0.1
ND 0.732*** -0.000*** 0.001** 0.000* 0.006*** 0.008*** 2 2 0.15
OH 1.415*** -0.001* -0.001** 0.006*** 2 1 0.05
OK 1.109*** -0.001*** -0.000** -0.000** -0.001*** -0.001***-0.001***-0.001***-0.000** 0.009*** 0.016*** 7 2 0.22
OR 1.473*** 0.003*** -0.014*** -0.010*** -0.012*** -0.014*** 0 4 0.65
PA 1.780*** 0.001*** -0.001** 1 0 0.12
SD 0.793*** 0.001*** 0.002*** 0 1 0.14
TX 0.898*** -0.001* -0.001* -0.001** 0.012** 0.015*** 3 2 0.05
UT 1.044*** 0.001*** 0 0 0.24
WA 2.372*** 0.002*** -0.014** -0.016** -0.030*** -0.024*** 0 4 0.29
WI 1.542*** -0.000* -0.001* -0.001* -0.001** -0.001** -0.001** -0.010*** -0.006** 5 2 0.11
WY 1.660*** 0.000*** -0.001* -0.001* -0.002** -0.002** -0.001** 6 0 0.11

Total 1 2 5 5 5 7 8 9 11 12 10 7 4 4 8 2 4 5 6 2 3 2 3 3
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Table 7-2. Results of the stepwise regression of the hay (excluding alfalfa) price on current and eleven lagged values of PDSI 

 

  

State Constant Trend PDSI PDSI(1) PDSI(2) PDSI(3) PDSI(4) PDSI(5) PDSI(6) PDSI(7) PDSI(8) PDSI(9) PDSI(10) PDSI(11) PDSI_max Rsq
AZ 1.160*** 0.003*** 0.018** 1 0.57
AR 1.024*** 0.001*** -0.026*** 1 0.12
CA 1.316*** 0.001*** -0.022*** 0.028*** 2 0.2
CO 1.399*** 0.001*** -0.046*** 1 0.4
ID 1.050*** 0.002*** 0 0.44
IL 1.155*** 0.000*** -0.026*** 1 0.1
IN 1.175*** 0.002*** 0.026** -0.054*** 2 0.16
IA 1.011*** 0.000*** -0.020*** 1 0.09
KS 1.080*** -0.007* 1 0.01
KY 1.390*** -0.001*** -0.019*** 1 0.18
MI 0.987*** 0.001*** 0 0.21
MN 1.053*** -0.032*** 1 0.07
MO 1.281*** -0.001*** -0.013*** 1 0.31
MT 1.160*** 0.001*** -0.038*** 1 0.13
NE 0.923*** 0.000*** -0.037*** -0.035*** 0.036*** 3 0.2
NV 1.472*** 0.001*** -0.022** -0.017* 2 0.32
NM 1.708*** 0.001*** -0.031*** -0.028*** 2 0.34
NY 1.303*** 0.001*** -0.013* -0.027*** -0.018** 3 0.21
ND 0.811*** -0.000*** -0.034*** 0.010** 2 0.17
OH 1.350*** -0.058*** 0.070*** 2 0.15
OK 1.200*** -0.000*** -0.029*** 0.025*** 2 0.15
OR 1.035*** 0.003*** 0.022*** 1 0.64
PA 1.658*** 0.001*** -0.034*** -0.024** 2 0.17
SD 0.807*** 0.001*** -0.022*** 1 0.17
TX 1.267*** -0.020* -0.021* 0.040*** 3 0.06
UT 1.034*** 0.001*** 0.010* 1 0.24
WA 1.665*** 0.002*** 0.031*** 1 0.27
WI 1.103*** -0.000** -0.034*** 0.026** 2 0.04
WY 1.374*** 0.000*** -0.024*** -0.048*** 0.026*** 3 0.18
Total 6 5 2 2 3 6 4 2 1 2 1 10
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Table 7-3. Results of the nonlinear regression of the hay (excluding alfalfa) price on precipitation and temperature and neighboring states 

 

State Constant Trend P P^2 NB_P NB_P^2 T T^2 NB_T NB_T^2 Rsq
AZ 2.667** 0.002*** 0.01 0 -0.025** 0.000* -0.197*** 0.004 0.16 -0.004 0.59
AR 16.796* 0 0.013 0 -0.013 0 -1.640*** 0.051 -0.349 0.012 0.05
CA -4.567 0.001*** -0.016*** 0.000*** -0.016*** 0 1.060*** -0.032 -0.206 0.004 0.29
CO 6.145*** 0.001*** -0.262*** 0.003*** 0.035** -0.000** 0.214*** -0.013** -0.189 0.009 0.54
ID 1.559* 0.001*** 0.009 0 -0.026** 0.000** -0.000*** -0.014 -0.025 0.011 0.5
IL -0.153 0 0.003 0 -0.058*** 0.000*** 1.156*** -0.047*** -0.517*** 0.020*** 0.28
IN 3.245 0.002*** -0.051 0 0.021 0 -3.120*** 0.136*** 3.120*** -0.141*** 0.3
IA 3.210*** 0.000*** -0.021** 0.000** 0.012 0 0.369*** -0.021 -0.694*** 0.036*** 0.25
KS 3.882** 0.000* -0.029*** 0.000*** 0.001 0 -0.748*** 0.028** 0.532*** -0.023*** 0.14
KY 3.078 -0.001*** -0.008 0 -0.051*** 0.000*** 0.240*** -0.006 -0.163 0.005 0.28
MI 5.213*** 0.002*** -0.015 0 -0.033 0 1.298*** -0.090*** -1.491*** 0.083*** 0.37
MN 0.963 -0.000** -0.01 0 0.024* -0.000* -0.325*** 0.007 0.207 0 0.26
MO -1.025 -0.001*** -0.008 0 -0.036*** 0.000*** 1.216*** -0.045*** -0.612** 0.024** 0.37
MT 3.580*** 0.001*** -0.057*** 0.000* 0.006 0 -0.830*** 0.053*** 0.545** -0.034* 0.3
NE 1.733** 0.000*** -0.109*** 0.001*** 0.028** -0.000** 0.230*** -0.017* 0.125 -0.004 0.43
NV 11.572*** 0.001*** 0.022*** -0.000** -0.061*** 0.000*** -1.596*** 0.091*** -0.119 -0.004 0.5
NM -8.312* 0.000*** -0.018*** 0.000*** 0.012 -0.000* 0.671*** -0.024 0.784*** -0.027*** 0.36
NY 0.442 0.001*** 0.057*** -0.000*** 0.01 0 0.699*** -0.054 -1.035 0.064 0.2
ND 0.783*** -0.000*** -0.022*** 0.000* 0.008 0 -0.379*** 0.028*** 0.392*** -0.023** 0.37
OH 5.210*** -0.001*** 0.053*** -0.000*** -0.132*** 0.001*** 0.343*** -0.002 -0.403 0.008 0.16
OK 8.269*** -0.001*** -0.007 0 0 0 -0.877*** 0.029** -0.05 0.004 0.29
OR 4.824*** 0.002*** 0.039*** -0.000*** -0.038*** 0.000*** -0.131*** 0.006 -0.530* 0.02 0.72
PA 0.673 0.001*** 0.001 0 0.02 0 0.005*** -0.001 0.067 -0.003 0.15
SD 0.774*** 0.001*** -0.069*** 0.001*** 0.042*** -0.000*** 0.220*** -0.022** -0.068 0.015* 0.31
TX 8.027 0 -0.025*** 0.000*** 0.009* 0 -0.731*** 0.024 -0.072 0.001 0.12
UT 3.060*** 0.001*** -0.054*** 0.001*** -0.004 0 0.264*** -0.016* -0.446*** 0.023*** 0.34
WA 4.891*** 0.002*** -0.073*** 0.000*** -0.032** 0 2.482*** -0.144*** -2.190*** 0.124*** 0.53
WI 2.803*** 0 -0.023 0 -0.008 0 0.439*** -0.028** -0.396** 0.016 0.13
WY 1.597* 0.001*** -0.02 0 -0.086** 0.001** -0.902*** 0.088*** 1.380*** -0.100*** 0.38
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Table 7-4. Results of the nonlinear regression of the hay (excluding alfalfa) price on PDSI and neighboring states 

 

State Constant Trend PDSI PDSI^2 NB_PDSI NB_PDSI^2Rsq
AZ 1.173*** 0.003*** 0.024** -0.008* -0.011 0.008* 0.57
AR 1.014*** 0.001*** -0.023*** 0.006* 0.022*** 0.001 0.15
CA 1.344*** 0.001*** 0.031** -0.009** -0.032* 0.003 0.21
CO 1.204*** 0.002*** 0.002 0.008** -0.008 0.047*** 0.48
ID 0.988*** 0.002*** -0.003 0.013*** 0.016 -0.009 0.46
IL 1.148*** 0.001*** -0.004 -0.004* -0.049*** -0.014*** 0.15
IN 1.192*** 0.001 -0.099*** 0.042*** 0.025 0.001 0.3
IA 1.028*** 0.000*** -0.032*** 0.003 0.011 -0.007 0.1
KS 1.085*** 0 0.015* -0.006** -0.030*** 0.011*** 0.06
KY 1.416*** -0.000*** -0.041*** 0.006** 0.022*** -0.017*** 0.24
MI 0.925*** 0.002*** 0.032*** -0.006 -0.096*** 0 0.28
MN 1.064*** 0 -0.060*** 0.022*** 0.013 -0.031*** 0.16
MO 1.312*** -0.001*** -0.023*** 0.012*** -0.008 0.016*** 0.37
MT 1.235*** 0.000*** -0.038*** 0.011*** -0.01 -0.027*** 0.17
NE 0.929*** 0.000** 0.004 -0.008*** -0.056*** 0.023*** 0.24
NV 1.395*** 0.001*** -0.037** 0.006 0 0.015** 0.37
NM 1.765*** 0.000*** -0.099*** 0.003 0.038*** -0.024*** 0.38
NY 1.335*** 0.001*** -0.044*** 0.007* -0.017 0.006 0.22
ND 0.826*** -0.000*** 0.002 -0.004* -0.039*** 0.015*** 0.2
OH 1.447*** 0 0.024*** -0.008*** -0.044*** -0.001 0.05
OK 1.199*** -0.001*** -0.008 0.008*** -0.016* -0.006 0.13
OR 1.043*** 0.003*** 0.099*** -0.011* -0.102*** 0.019** 0.67
PA 1.798*** 0.000*** -0.089*** 0.026*** 0.057*** -0.013** 0.23
SD 0.786*** 0.001*** -0.015 -0.008** -0.014 0.024*** 0.19
TX 1.253*** 0.000*** -0.040*** -0.005 0.030** -0.030*** 0.16
UT 1.063*** 0.001*** 0.106*** 0.018*** -0.131*** -0.016*** 0.4
WA 1.580*** 0.002*** 0.052*** 0.019*** -0.021 -0.004 0.29
WI 1.117*** -0.000*** -0.082*** 0.023*** 0.081*** -0.021*** 0.07
WY 1.292*** 0.000*** -0.071*** 0.035*** 0.014 -0.034*** 0.33
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Table 7-5. Results of the stepwise regression of the alfalfa hay price on current and eleven lagged values of precipitation and temperature 

 

  

State Constant Trend P P(1) P(2) P(3) P(4) P(5) P(6) P(7) P(8) P(9) P(10) P(11) T T(1) T(2) T(3) T(4) T(5) T(6) T(7) T(8) T(9) T(10) T(11) P_max T_max Rsq
AZ 1.438*** 0.001*** -0.001** 0.010*** 0.006** 1 2 0.3
AR 1.076*** 0.000** 0.002** 0 1 0.05
CA 1.892*** 0.001*** -0.008*** 0 1 0.16
CO 2.021*** 0.002*** -0.001* -0.001** -0.002** -0.002***-0.002** -0.002***-0.002***-0.002***-0.002** -0.005*** 9 1 0.54
ID 1.506*** 0.001*** -0.008** -0.012*** 0 2 0.32
IL 1.459*** 0.001*** 0.004*** 0 1 0.12
IN 1.681*** 0.002*** -0.001** -0.002***-0.001** -0.001** 0.013*** 4 1 0.27
IA 2.499*** 0.001*** -0.001* -0.001** -0.001* -0.001** -0.001***-0.001* -0.011** -0.010* -0.012** -0.017*** -0.013*** -0.013*** -0.013*** 6 7 0.2
KS 2.331*** 0.001*** -0.001** -0.001* -0.001** -0.001* -0.001** -0.001***-0.001***-0.001***-0.001* -0.001* -0.001** -0.011** -0.009* -0.008* -0.012*** 11 4 0.23
KY 1.629*** -0.000** -0.000* -0.001** 2 0 0.06
MI 1.830*** 0.001*** -0.001* -0.001* -0.001* -0.001* -0.001* -0.001** -0.001*** -0.012*** 7 1 0.29
MN 2.533*** -0.000** -0.001** -0.001***-0.001* -0.001***-0.001***-0.001** -0.001** -0.001** -0.001** -0.014***-0.014*** -0.009** -0.012** -0.011** -0.008* -0.008*? -0.010** 9 8 0.26
MO 1.261*** -0.001*** 0.005** 0.008*** 0 2 0.21
MT 1.780*** 0.000** -0.001 -0.002** -0.002***-0.002***-0.002***-0.002*** -0.007*** 6 1 0.14
NE 2.302*** 0.001*** -0.001***-0.001***-0.002***-0.002***-0.002***-0.002***-0.002***-0.002***-0.002***-0.002***-0.002*** -0.011*** -0.009** -0.013*** 11 3 0.38
NV 1.711*** 0.001*** 0 0 0.15
NM 1.843*** 0.001*** -0.001** -0.001** -0.001** 0.010*** 0.016*** 3 2 0.26
NY 1.775*** 0.000*** -0.001* -0.001* 2 0 0.04
ND 1.015*** -0.000*** -0.005*** 0.004*** 0.010*** 0 3 0.08
OH 1.551*** -0.001*** 0.020*** 0.003 0.016*** 0 3 0.07
OK 1.745*** -0.001*** -0.001** -0.000* -0.001*** -0.001***-0.001***-0.001** -0.000* 0.010*** . 7 1 0.24
OR 1.722*** 0.002*** -0.007* -0.013*** 0 2 0.42
PA 2.061*** 0.000*** -0.001** 1 0 0.04
SD 1.044*** 0.001*** 0.002* 0 1 0.08
TX 1.423*** -0.000** -0.001* -0.001** -0.001** . -0.001** -0.001** -0.001** 0.014*** 0.009** 6 2 0.16
UT 1.376*** 0.001*** -0.003** 0 1 0.27
WA 2.633*** 0.002*** -0.022***-0.019*** -0.022***-0.022*** -0.017** -0.020*** 0 6 0.35
WI 2.038*** -0.001** -0.001*** -0.001* -0.002***-0.002***-0.001** -0.014*** 6 1 0.14
WY 1.713*** 0.001*** -0.002*** -0.001** -0.001* -0.002** -0.001* -0.002** 6 0 0.16

Total 0 2 5 7 7 9 10 13 12 11 11 10 6 6 6 3 4 4 4 8 4 4 5 3
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Table 7-6. Results of the stepwise regression of the alfalfa hay price on current and eleven lagged values of PDSI 

 

  

State Constant Trend PDSI PDSI(1) PDSI(2) PDSI(3) PDSI(4) PDSI(5) PDSI(6) PDSI(7) PDSI(8) PDSI(9) PDSI(10) PDSI(11) PDSI_max Rsq
AZ 1.620*** 0.001*** -0.028*** 0.034*** 2 0.2
AR 1.100*** 0.001*** -0.021*** 1 0.11
CA 1.748*** 0.001*** 0.035*** 1 0.15
CO 1.377*** 0.002*** -0.026*** -0.026** 0.037*** 3 0.5
ID 1.383*** 0.001*** 0 0.3
IL 1.489*** 0.001*** -0.016*** 1 0.11
IN 1.352*** 0.002*** 0.029** -0.057*** 2 0.18
IA 1.324*** 0.001*** -0.041*** 1 0.12
KS 1.297*** 0.001*** -0.021*** -0.025** 0.026*** 3 0.13
KY 1.495*** -0.029*** 1 0.07
MI 1.273*** 0.001*** 0 0.18
MN 1.476*** -0.000** 0.030** -0.031* -0.031** 3 0.09
MO 1.412*** -0.001*** -0.009* -0.013** 2 0.24
MT 1.328*** 0.000*** -0.037*** -0.034* 0.042** 3 0.08
NE 1.005*** 0.001*** -0.049*** -0.046*** 0.053*** 3 0.27
NV 1.717*** 0.001*** -0.025*** 0.015* 2 0.17
NM 2.193*** 0.000*** -0.038*** -0.033*** -0.027*** 3 0.39
NY 1.546*** 0.001*** -0.012* -0.024** -0.025** 3 0.17
ND 1.006*** -0.036*** 1 0.13
OH 1.945*** -0.000** -0.045*** 0.041*** 2 0.07
OK 1.513*** -0.001*** -0.029*** 0.036*** 2 0.18
OR 1.535*** 0.002*** 0.033*** 1 0.44
PA 1.926*** 0.001*** -0.045*** -0.023** 2 0.1
SD 1.049*** 0.001*** -0.030*** -0.025* 0.027** 3 0.14
TX 1.501*** -0.044*** 0.031*** 2 0.08
UT 1.334*** 0.001*** -0.012* 0.025*** 2 0.29
WA 1.609*** 0.001*** 0.025*** 1 0.27
WI 1.410*** -0.047*** 0.022* 2 0.04
WY 1.394*** 0.001*** -0.024** -0.028* -0.030* 0.041*** 4 0.21
Total 10 4 2 4 4 4 4 2 4 5 0 13
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Table 7-7. Results of the nonlinear regression of the alfalfa hay price on precipitation and temperature and neighboring states 

 

State Constant Trend P P^2 NB_P NB_P^2 T T^2 NB_T NB_T^2 Rsq
AZ -6.669 0 -0.005 0 -0.024** 0.000** 1.544*** -0.044 -0.566 0.018 0.29
AR 5.768 0 -0.003 0 -0.002 0 -0.381*** 0.01 -0.16 0.007 0.06
CA -4.22 0.001*** -0.019*** 0.000** 0.018 0 0.790*** -0.031 0.179 -0.008 0.18
CO 8.904*** 0.002*** -0.166*** 0.002*** 0.02 0 0.199*** -0.011* -0.764 0.027 0.61
ID 3.419** 0.002*** -0.039* 0 0.009 0 0.016*** -0.017 -0.272 0.022 0.37
IL -0.428 0.001*** -0.073*** 0.000*** 0.044* -0.000** 1.368*** -0.060*** -0.878*** 0.043*** 0.18
IN 10.776 0.001* -0.135*** 0.001** 0.073* 0 5.516*** -0.260*** -6.836*** 0.331*** 0.3
IA 7.742*** 0 -0.033*** 0.000*** 0.003 0 -0.811*** 0.024 -0.127 0.022 0.3
KS 4.556* 0.000*** -0.003 0 -0.107*** 0.001*** 0.698*** -0.017 -0.506 0.003 0.43
KY -0.551 -0.000*** 0.003 0 -0.032** 0.000*** 0.700*** -0.029 -0.247 0.015 0.15
MI 2.581** 0.001*** -0.004 0 -0.031 0 0.922*** -0.063** -0.656* 0.038 0.3
MN 2.305* -0.000* 0.065*** -0.001*** -0.085*** 0.001*** -0.527*** 0.022 0.398 -0.011 0.28
MO -1.752 -0.001*** -0.012 0 -0.031*** 0.000*** 1.193*** -0.043*** -0.453 0.016 0.29
MT 5.962*** 0.001*** -0.051** 0 0 0 0.199*** -0.022 -1.049** 0.076** 0.3
NE 2.35 0.001*** -0.133*** 0.001*** 0.001 0 0.071*** -0.007 0.509 -0.027 0.49
NV 2.872 0.000* -0.029*** 0.000*** -0.043*** 0.000*** -0.214*** 0.011 0.336 -0.018 0.25
NM -10.95* 0.000** -0.015** 0 -0.034* 0.000* 2.146*** -0.083** 0.144 -0.007 0.36
NY -2.939 0.001*** 0.04 -0.000* 0.001 0 -0.840*** 0.037 1.241 -0.049 0.17
ND 0.258 0 -0.051*** 0.000*** 0.068*** -0.001*** -0.433*** 0.040*** 0.425* -0.033* 0.27
OH -1.337 -0.000** -0.025 0 0.059 0 0.657*** -0.028 -0.359 0.016 0.08
OK -1.857 -0.001*** 0.024*** -0.000*** -0.041*** 0.000*** -0.272*** 0.012 0.930*** -0.039*** 0.32
OR -0.911 0.002*** -0.038*** 0.000*** 0.040*** -0.000*** -0.512*** 0.021*** 1.047*** -0.050*** 0.51
PA -0.055 0.001*** -0.072*** 0.000*** 0.120*** -0.001*** -1.122*** 0.054 1.182** -0.057** 0.1
SD 4.037*** 0.001*** 0.052** -0.001*** -0.117*** 0.001*** -2.147*** 0.112*** 2.211*** -0.126*** 0.38
TX 9.39 -0.000** -0.026*** 0.000*** -0.004 0 0.006*** 0.005 -1.033* 0.030* 0.18
UT 1.424 0.001*** -0.041*** 0.001*** -0.022 0 -0.153*** 0.006 0.414** -0.020** 0.37
WA 8.069*** 0.002*** -0.008 0 -0.018 0 -1.883*** 0.093** 0.908* -0.056* 0.41
WI 1.96 0 0.012 0 -0.060* 0.000* -0.328*** 0.045 0.787 -0.073 0.15
WY 3.258* 0.001*** -0.080*** 0.001*** 0.032 -0.001 -0.225*** 0.024 0.135 -0.019 0.36
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Table 7-8. Results of the nonlinear regression of the alfalfa hay price on PDSI and neighboring states 

 

State Constant Trend PDSI PDSI^2 NB_PDSI NB_PDSI^2Rsq
AZ 1.573*** 0.001*** -0.001 0.004 0.034*** 0.001 0.2
AR 1.103*** 0.001*** -0.018** -0.003 0.016** -0.01 0.12
CA 1.756*** 0.001*** 0.011 -0.011*** 0.038** 0.005 0.16
CO 1.290*** 0.002*** 0.013 0.002 -0.030** 0.014** 0.49
ID 1.282*** 0.002*** 0.001 -0.005 0.008 0.034*** 0.35
IL 1.490*** 0.001*** -0.006 -0.004 -0.018 0.003 0.11
IN 1.352*** 0.001* -0.088*** 0.037*** 0.023 0.016 0.32
IA 1.370*** 0.001*** -0.076*** 0.007 0.031* -0.016** 0.14
KS 1.295*** 0.001*** -0.012 -0.005 -0.014 0.012 0.11
KY 1.553*** 0 -0.046*** 0.009*** 0.008 -0.019*** 0.14
MI 1.248*** 0.001*** 0.028** -0.008** -0.081*** -0.007 0.23
MN 1.471*** 0 -0.081*** 0.026*** 0.029** -0.045*** 0.16
MO 1.430*** -0.001*** -0.044*** -0.012*** 0.015 0.023*** 0.29
MT 1.396*** 0 -0.047*** 0.015*** 0.012 -0.024*** 0.12
NE 1.012*** 0.000*** 0.009 -0.018*** -0.069*** 0.040*** 0.24
NV 1.660*** 0.001*** -0.059*** 0.004 0.066*** 0.005 0.2
NM 2.222*** 0.000*** -0.117*** 0.003 0.024 -0.017** 0.4
NY 1.556*** 0.001*** -0.045*** -0.006 -0.003 0.025*** 0.21
ND 1.026*** -0.000** -0.001 -0.005* -0.041*** 0.017*** 0.17
OH 1.956*** -0.000** 0.030*** 0.005 -0.081*** -0.005 0.08
OK 1.504*** -0.001*** 0.011 0.006* -0.029** 0.001 0.14
OR 1.491*** 0.002*** 0.101*** -0.007 -0.100*** 0.026*** 0.5
PA 2.071*** 0 -0.102*** 0.032*** 0.070*** -0.012** 0.18
SD 1.037*** 0.001*** -0.005 -0.008 -0.039* 0.020** 0.14
TX 1.511*** 0.000*** -0.046*** -0.008 0.023* -0.024*** 0.13
UT 1.368*** 0.001*** 0.092*** -0.006* -0.118*** 0.021*** 0.41
WA 1.540*** 0.002*** 0.026** 0.015*** 0.007 -0.005 0.29
WI 1.416*** 0 -0.074*** 0.016** 0.044** -0.023** 0.04
WY 1.355*** 0.000*** -0.078*** 0.037*** 0.026* -0.042*** 0.37
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Mitigating forage replacement cost with a disappearing deductible 
 

Given the relationship of forage yield to replacement forage prices, we investigated the potential to 
increase payments when a deep loss occurred.  In other words, replacement cost is likely to be higher in a 
severe loss situation than in a less severe shortfall.  Our team looked at mechanisms such as triggering 
higher payments when the grid is in drought region.  Also, we considered some defined spatial region 
having a shortfall to trigger larger indemnities.  All of these options have some merit.  However, for the 
sake of simplicity, we opted for modifying the indemnity function by recommending a disappearing 
deductible. 

 Disappearing deductibles were once a common option in property insurance in the United States, 
particularly for commercial policies. Although disappearing and franchise deductibles are still found in 
Europe, this method of risk sharing is now relatively rare in the United States, where the elimination of 
the deductible in the event of a large loss is generally not viewed as worth the additional premium 
required.  

The International Risk Management Institute, Inc. provides the following definition: 

“Disappearing Deductible — a formula deductible that decreases as the amount of loss increases 
and disappears entirely to provide full coverage when the loss reaches a specified amount. 
Disappearing deductibles were once commonly used in property insurance policies.” 

Theory and Practice of Insurance describes the concept of a disappearing deductible: 

“Besides the usual deductibles, the concept of disappearing deductible is often used for large business 
risks. Under a disappearing deductible, the size of the deductible decreases as the size of the loss 
increases. At a given level of loss (L*) the deductible is equal to zero (disappears). The formula to apply 
the reduction in the deductible (D) is the following: 

Compensation by the insurer = (Amount of loss – Deductible) x (1+k) 

Where k is the adjusting factor: 

 

 k = D / (L* - D) 

and L* = D/k + D 

 

If the adjusting factor is fixed at 5% and the deductible is $1,000, then the deductible will disappear when 
the loss equals or exceeds $21,000. All losses under $1,000 are absorbed by the insured. On a loss of 
$15,000 the insurer would pay $14,700 (a $300 deductible). 

Similarly, Cízek, Härdle, and Weron (2005) describe various types of deductibles, including franchise and 
disappearing deductibles: 
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Franchise Deductible  

One of the deductibles that can be incorporated in the contract is the so-called franchise deductible. In this 
case, the insurer pays the whole claim, if the agreed deductible amount is exceeded. More precisely, under 
the franchise deductible of , if the loss is less than the insurer pays nothing, but if the loss equals or 
exceeds claim is paid in full. This means that the payment function can be described as:  

 

 

 

 

Figure 7-1 

STFded01.xpl  
 

The payment function under the franchise deductible (solid blue line) and no deductible (dashed 
red line).  

The pure risk premium under the franchise deductible can be expressed in terms of the premium in the 
case of no deductible and the corresponding limited expected value function:  
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It can be easily noticed that this premium is a decreasing function of . When the premium is 
equal to the no deductible case and if tends to infinity the premium tends to zero.  

Disappearing Deductible  
There is another type of deductible that is a compromise between the franchise and the fixed amount 
deductible. In the case of a disappearing deductible, the payment depends on the loss in the following 
way: if the loss is less than an amount of   𝑑𝑑1 > 0, the insurer pays nothing; if the loss exceeds 

  𝑑𝑑2 (𝑑𝑑2 > 𝑑𝑑1) amount, the insurer pays the loss in full; if the loss is between  𝑑𝑑1 and  𝑑𝑑2 , then the 
deductible is reduced linearly between  𝑑𝑑1 and  𝑑𝑑2. Therefore, the larger the claim, the less of the 
deductible becomes the responsibility of the policyholder. The payment function is given by Figure 7.2  
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Figure 7-2 
 

The payment function under the disappearing deductible (solid blue line) and no deductible 
(dashed red line). 

The following formula shows the premium under the disappearing deductible in terms of the premium in 
the case of no deductible and the corresponding limited expected value function  

 

    

 
If    𝑑𝑑1 = 0,, the premium does not depend on 𝑑𝑑2 and it becomes the premium in the case of no 
deductible. If 𝑑𝑑2tends to infinity, then the disappearing deductible reduces to the fixed amount deductible 
of  𝑑𝑑1. 

 .  

Recommendation: Targeting Indemnities to make PRF a better risk 
management tool 

 
Our review leads us to conclude that the current program frequently pays for shallow losses 
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that are likely not significant financial threats while at times not sufficiently compensating 
for deep losses that are often a part of widespread droughts driving up replacement forage 
costs.  We believe the program can become a better risk management tool.  Based on the 
evidence we find a relationship between the replacement cost of forage and deep losses. We 
recommend dropping the maximum coverage level to 80 percent while also adding a 
disappearing deductible and adjustment to enhance indemnities when in an extreme loss 
situation.  One could develop more elaborate drought triggers, but they add significant 
complexity.  For the sake of operational simplicity, we believe the indemnity function should 
be in the form of a disappearing deductible and perhaps reflect an accelerated disappearing 
deductible. 

 

In the Pasture, Rangeland, Forage (PRF) Crop Provisions, section 5. (a) 
states: 
 
5.   Amounts of Protection and Coverage Levels 
In lieu of section 7(a)(1) of the Basic Provisions, catastrophic risk protection is not available 
under these Crop Provisions. 
(a) In lieu of section 7(a)(2) of the Basic Provisions, for additional coverage policies, when 
available in the actuarial documents: 
(i)  You may select only one coverage level from 70 percent through 90 percent for the county, 
crop, intended use, irrigated practice, and organic practice; and Merely reducing the maximum 
coverage level without making further adjustments disadvantages the grower who previously 
elected higher coverage. The following graph illustrates indemnity levels for growers with 90 
percent and 80 percent coverage: 



167 
 

 

Figure 7-3 
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Figure 7-3 

To illustrate the combination of decreased maximum coverage with a disappearing 
deductible consider a standard indemnity function 

CBV = $40 

Expected Index value = 100. 

Previous coverage level = 90% 

New maximum coverage level = 80% 

Trigger level = Expected Index Value * Coverage level = 0.80 

Final Index value = 0.50 

Previous coverage level indemnity = Maximum (prior trigger level – final index value) * 
Trigger level * CBV), 0) = (0.9 – 0.5) * $40 = 0.4 * $36 = $16.00 

Absolute Deductible Indemnity with new maximum coverage level  = Maximum ((trigger 
level – final index value) * Trigger level * CBV), 0) =  (0.8 – 0.5) * 0.8 * $40 = 0.3 * $32 = 
$9.60 
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Conversely a disappearing deductible could be targeted to gradually eliminate the deductible 
as the loss increases: 

Disappearing Deductible Indemnity = Maximum (((trigger level – final index value))/ trigger 
level  * CBV), 0) =  0.375 * $40 = $15 

Or, a modified Disappearing Deductible could simply return the producer to the same level 
of coverage desired (90%) once coverage is triggered (80%): 

Modified Disappearing Deductible Indemnity = $0 when final index < new maximum 
coverage level, otherwise previous coverage level indemnity 

In the extreme case of a rainfall index equal to zero 

Absolute Deductible Indemnity = Maximum ((trigger level – final index value) * Trigger 
level * CBV), 0) = 1.0 * $32 = $32.00 

Disappearing Deductible Indemnity = Maximum (((trigger level – final index value))/ trigger 
level * CBV), 0) = 1.0 * $40 = $40 

Linear approaches to making up the gap in coverage due to the decreased maximum 
indemnity may still overcompensate the grower in the event of relatively shallow losses. We 
note that the disappearing deductible function does not necessarily need to follow a linear 
function as shown above. It can be scaled to provide more coverage in the event of deeper 
losses using an exponent. Extending our example: 

Non-linear disappearing deductible  

Scaling exponent = 1.25 

Non-linear Deductible Indemnity = Maximum (((trigger level – final index value)) ^ scaling 
exponent / trigger level * CBV), 0) = 0.375 ^ 1.25 * $40 = $11.70 

Another approach is to speed up the loss function such that maximum indemnity is reach 
when the total factor loss is reached.  This approach is described in Martin, Barnett, and 
Coble (2001). 
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Figure 7-4 
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Appendix 1: Summary of CBV Calculation Steps 
 
Non-irrigated Haying CBV Calculation 
 
A. Calculate non-irrigated hay yield (in tons/acre) 

 
1. Take the 10-year average of the most recent state-level NASS non-irrigated “all hay” yield data: 

10
10

1

1
10State i

i
AHY AHY

=

= ∑ ,  

where: 10
StateAHY  is the 10-year state-level average non-irrigated yields, and iAHY  is the NASS 

state-level non-irrigated “all hay” yield in the year i. 
 

2. Calculate the non-irrigated haying factor (NHF) from the FRIS data on non-irrigated hay yields (
FNHY ) and “all hay” yields ( FAHY ):   

F

F

NHYNHF
AHY

= . 

 

3. Multiply NHF to the 10
StateAHY  to get the state-level non-irrigated hay yield ( 10

StateNHY ): 
10 10
State StateNHY NHF AHY= × . 

 
4. From the NRCS HPM, derive percent difference between district-level and state-level net primary 

productivities (NPP), which we call the NPP district-state factor (NDSF). 
  

5. Multiply NDSF to the 10
StateNHY  to get the district-level non-irrigated hay yield value ( 10

DistrictNHY
) in tons/acre: 10 10

District StateNHY NDSF NHY= ×  . 
 
B. Calculate non-irrigated hay price (in $/ton) 

 
1. Take the 3-year average of the most recent NASS “all hay, excluding alfalfa” price data: 

3
3

1

1
3State i

i
HP HP

=

= ∑ . 

where: 3
StateHP  is the 3-year average state-level non-irrigated hay price, and iHP  is the NASS “all 

hay, excluding alfalfa” price in year i. 
 

2. For certain states (with predominantly irrigated hay production), a regional average of 3
StateHP  for 

the Plain states are used. 
 

C. Calculate the non-irrigated hay CBV (in $/acre) 
 

1. Multiply 10
DistrictNHY with 3

StateHP  to get the non-irrigated hay CBV estimate ( NIHCBV ) at the 
district-level: 
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10 3NIH
District StateCBV NHY HP= × . 

 
 
 
Irrigated Haying CBV Calculation 
 

1. Collect data from FRIS on state-level irrigation cost (per acre inch) ( State
sIC ) by different irrigation 

source s.  

2. Take the weighted average of State
sIC  to get an overall estimate of the average state-level irrigation 

cost (per acre inch) ( StateIC ):  ( )
1

1 s
State State

s s
s

IC IC
s

γ
=

= ×∑  where sγ  is the weight by source. 

3. Multiply StateIC  to the inches of rainfall (R) at the grid-level to get the irrigated haying CBV 

( )IHCBV  in $/acre:   IH StateCBV IC R= × . 
 
 
Grazing CBV Calculation 
 
A. Calculate grazing yield (in tons/acre) 

 
1. Collect yearly pasture rental rate ($/acre) and grazing rate ($/AUM) data at the state level. 

 
2. Calculate the 10-year average of the most recent NASS state-level pasture rental rate (PR) and 

grazing rate (GR) data: 
10

10

1

1
10State i

i
PR PR

=

= ∑  and 
10

10

1

1
10State i

i
GR GR

=

= ∑ . 

3. Estimate the average forage consumption (or the forage “harvested” by livestock) that is an 

estimate of grazing yield ( AUM
StateGY )in AUM/acre by dividing 10

StatePR  by 10
StateGR : 

10

10
AUM State

State
State

PRGY
GR

= . 

4. Multiply AUM
StateGY  by the AUM-Ton conversion factor (ATCF) (where ATCF = 0.47 tons/AUM) 

to get an estimate of the grazing yield in tons/acre ( StateGY ): 
AUM

State StateGY GY ATCF= × . 
 

B. Calculate grazing price (in $/ton) 
 
1. Calculate 3-year averages for the most recent yearly state-level grazing rates (GR) in $/AUM and 

most recent NASS “all hay, excluding alfalfa” price (HP) data in $/ton: 
3

3

1

1
3State i

i
GR GR

=

= ∑  and 
3

3

1

1
3State i

i
HP HP

=

= ∑ . 
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2. Convert 3
StateGR  to its $/ton equivalent by dividing 3

StateGR  by the ATCF: 
3

State StateGR GR ATCF= × . 

3. Calculate the “blended” grazing price (BGP) in $/ton by taking the ave. of StateGR and 3
StateHP : 

( )31
2State State StateBGP GR HP= + . 

C. Calculate the grazing CBV (in $/acre) 

1. Calculate the state-level grazing CBV ( G
StateCBV ) by multiplying StateGY  and StateBGP : 

G
State State StateCBV GY BGP= × . 

 
2. From the NRCS HPM, derive NPP county-state factor (NCSF) by taking the ratio of the county-

level NPP and the state-level NPP. 
 

3. Compute the county-level grazing CBV ( G
CountyCBV ) by multiplying G

StateCBV  with the NCSF: 
G G

County StateCBV CBV NCSF= × . 

 
4. For each agricultural district in the state, the district-level grazing CBV ( GCBV ) used in the 

PRF contract is derived by taking the average of the county-level grazing CBVs from the counties 
that comprise each district:  

,
1

1 n
G G

County i
i

CBV CBV
n =

= ∑ . 
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Appendix 2 Price Yield Relationship 
 
To evaluate the extent to which a relationship exists between yield, price, precipitation, and 
temperature, we collected hay (alfalfa and all classes) prices and yields from NASS.  In light 
of likely changes in the technology associated with pasture and forage production, we 
limited our analysis to the period spanning 1980-2018.  Prices and weather (precipitation 
and temperature) were observed monthly.  Yields were only available on an annual basis 
and thus the yield data were compared to annual aggregates of precipitation and 
temperature.  Temperature data are reported for the maximum temperature, the minimum 
temperature, and the average temperature.   
 
Figure A1 to A5 illustrates the relationship between price changes (given as the log of the 
ratio of price to the previous year’s price in the same month).  Figure A2 considers the 
change in precipitation relative to the previous month.  Linear regression lines were 
included in the evaluation to consider whether any simple relationships between yields, 
prices, and the various weather variables were obvious.  None were found.  Given the 
limited data available on pasture, hay, and forage yields and prices, we were unable to 
discern any significant relationship between prices, yields, and weather.  Although the 
relevant agronomic/rangeland literature has noted the importance of both temperature and 
precipitation to pasture and range health, our analysis does not reveal any relationships that 
might prove helpful in establishing a payoff schedule based upon precipitation and 
temperature.   
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Figure A1. Precipitation and Price Change from Previous Year  
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Figure A2. Precipitation and Price Change from Previous Month 
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Figure A3. Maximum Temperature and Price Change from Previous Year 
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Figure A4. Minimum Temperature and Price Change from Previous Year 
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Figure A5. Average Temperature and Price Change from Previous Year 
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Appendix 2 Station IDs With LCC 8/U > 50% of Land Area 
FIPS Codes FIPS Codes 

4001 22051 

4003 22057 

4007 22075 

4009 22087 

4012 22089 

4015 22095 

4021 22101 

8009 22109 

8079 34017 

8099 35028 

12087 35031 

13051 35049 

16037 36085 

16081 38075 

20071 44001 

20075 46035 

20171 46061 

20187 46119 

20203 48383 

22023  
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Appendix 3 Station IDs With Forage Production < 1st Percentile 
Station     Station     

ID Latitude Longitude ID Latitude Longitude 

14763 32.375 -114.375 19854 36.625 -116.625 

14764 32.375 -114.125 19858 36.625 -115.625 

15361 32.875 -114.875 19859 36.625 -115.375 

15660 33.125 -115.125 20150 36.875 -117.625 

15661 33.125 -114.875 20151 36.875 -117.375 

15957 33.375 -115.875 20450 37.125 -117.625 

15958 33.375 -115.625 20451 37.125 -117.375 

15959 33.375 -115.375 20452 37.125 -117.125 

15960 33.375 -115.125 20453 37.125 -116.875 

15961 33.375 -114.875 20751 37.375 -117.375 

16260 33.625 -115.125 21050 37.625 -117.625 

16261 33.625 -114.875 21051 37.625 -117.375 

16559 33.875 -115.375 21052 37.625 -117.125 

16560 33.875 -115.125 21053 37.625 -116.875 

16561 33.875 -114.875 21054 37.625 -116.625 

16857 34.125 -115.875 21055 37.625 -116.375 

16858 34.125 -115.625 21348 37.875 -118.125 

16859 34.125 -115.375 21349 37.875 -117.875 

16860 34.125 -115.125 21350 37.875 -117.625 

16861 34.125 -114.875 21351 37.875 -117.375 

16862 34.125 -114.625 21352 37.875 -117.125 

17156 34.375 -116.125 21353 37.875 -116.875 

17157 34.375 -115.875 21648 38.125 -118.125 

17158 34.375 -115.625 21649 38.125 -117.875 

17159 34.375 -115.375 21650 38.125 -117.625 

17160 34.375 -115.125 21651 38.125 -117.375 

17455 34.625 -116.375 21652 38.125 -117.125 

17456 34.625 -116.125 21948 38.375 -118.125 

17457 34.625 -115.875 21949 38.375 -117.875 

17756 34.875 -116.125 21950 38.375 -117.625 
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18054 35.125 -116.625 21951 38.375 -117.375 

18055 35.125 -116.375 21957 38.375 -115.875 

18056 35.125 -116.125 21976 38.375 -111.125 

18356 35.375 -116.125 21977 38.375 -110.875 

18654 35.625 -116.625 22247 38.625 -118.375 

18655 35.625 -116.375 22276 38.625 -111.125 

18656 35.625 -116.125 22277 38.625 -110.875 

18676 35.625 -111.125 22546 38.875 -118.625 

18954 35.875 -116.625 22547 38.875 -118.375 

18975 35.875 -111.375 22548 38.875 -118.125 

19260 36.125 -115.125 22580 38.875 -110.125 

19287 36.125 -108.375 22846 39.125 -118.625 

19549 36.375 -117.875 23445 39.625 -118.875 

19551 36.375 -117.375 23745 39.875 -118.875 

19553 36.375 -116.875 23746 39.875 -118.625 

19554 36.375 -116.625 23747 39.875 -118.375 

19852 36.625 -117.125 24366 40.375 -113.625 

19853 36.625 -116.875 24367 40.375 -113.375 
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